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Abstract

Satellite passive ocean color instruments have provided an unbroken
∼20-year record of global ocean plankton properties, but this measurement
approach has inherent limitations in terms of spatial-temporal sampling and
ability to resolve vertical structure within the water column. These limita-
tions can be addressed by coupling ocean color data with measurements from
a spaceborne lidar. Airborne lidars have been used for decades to study ocean
subsurface properties, but recent breakthroughs have now demonstrated that
plankton properties can be measured with a satellite lidar. The satellite li-
dar era in oceanography has arrived. Here, we present a review of the lidar
technique, its applications in marine systems, a perspective on what can be
accomplished in the near future with an ocean- and atmosphere-optimized
satellite lidar, and a vision for a multiplatform virtual constellation of ob-
servational assets that would enable a three-dimensional reconstruction of
global ocean ecosystems.

121

https://doi.org/10.1146/annurev-marine-121916-063335
https://doi.org/10.1146/annurev-marine-121916-063335


MA10CH06-Hostetler ARI 21 October 2017 10:21

Fluorescence:
absorption of a photon
by an atom or
molecule and
subsequent emission of
a photon as that atom
or molecule relaxes
back to a lower energy
state

1. INTRODUCTION

Marine ecosystems are complex entities that encompass vast numbers of species functioning over
a wide range of spatial and temporal scales. Phytoplankton constitute the base of most marine
ecosystems, and their annual net photosynthetic carbon fixation is roughly equivalent to that of
all terrestrial plants (Field et al. 1998, Behrenfeld et al. 2001). This production at the base of
the aquatic food chain drives CO2 exchange between the atmosphere and ocean and fuels carbon
sequestration in the deep sea (Falkowski et al. 1998, DeVries et al. 2012). Accordingly, plankton
productivity plays a vital role in Earth’s coupled ocean-atmosphere system. Furthermore, and in
stark contrast to terrestrial vegetation, the entire global ocean phytoplankton stock is consumed
and regrown every week (Antoine et al. 1996, Behrenfeld & Falkowski 1997). This rapid turnover
underpins ocean food webs and, hence, fish stocks and global food supply. In addition, through
an array of trophic interactions and metabolisms, some of the organic carbon products initially
produced by phytoplankton are converted into volatilized molecules that leave the surface ocean
and function as atmospheric aerosols that influence clouds and Earth’s radiative budget (Meskhidze
& Nenes 2006, Quinn & Bates 2011, Gantt & Meskhidze 2013, McCoy et al. 2015).

Satellite passive ocean color observations have vastly improved our understanding of global links
between biodiversity, ecosystem structure, and ecological and biogeochemical function (McClain
2009). However, there are fundamental geophysical properties that simply cannot be characterized
with ocean color technology alone (Section 2). Addressing these issues requires additional tools in
space. For example, the Plankton, Aerosol, Cloud, and Marine Ecosystem (PACE) mission (NASA
2012) aims to co-deploy a multi-angle polarimeter with a hyperspectral ocean color sensor, with
the polarimetry enabling more accurate atmospheric corrections and advanced characterization
of ocean particle types (Loisel et al. 2008). Here, we describe how even greater synergies may be
achieved by combining a passive ocean color sensor with an ocean-optimized satellite profiling
lidar.

We begin this article with a brief review of the strengths and limitations of passive ocean
color measurements (Section 2). We then present ocean lidar fundamentals (Section 3), describe
airborne lidar measurements of ocean properties (Section 4), and summarize the current state of
spaceborne lidar ocean remote sensing (Section 5). Our final sections describe an ocean-optimized,
interdisciplinary lidar concept achievable in the near term (Sections 6 and 7) and introduce a
multiplatform vision of synergistic space and field observations for global biogeochemical and
ecosystem research (Section 8).

2. PASSIVE OCEAN COLOR: ADVANCES AND CHALLENGES

In the modern era of Earth system science, the availability of global satellite-based observations is
all too easily taken for granted. But for the oceanographic community, such data are still a relatively
new development, with the continuous global data record extending back less than 20 years. The
Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) was the first ocean color sensor to provide
multiyear, fully global ocean color data. The SeaWiFS design was built on the proof-of-concept
Coastal Zone Color Scanner (CZCS) and provided measurements at eight spectral bands, orig-
inally targeting a modest set of ocean geophysical properties (e.g., chlorophyll concentration).
Subsequent missions [such as the Moderate Resolution Imaging Spectroradiometer (MODIS),
the Medium Resolution Imaging Spectrometer (MERIS), and the Visible Infrared Imaging Ra-
diometer Suite (VIIRS)] largely continued these heritage measurements, with some expansion
(e.g., chlorophyll fluorescence bands on MODIS and MERIS) and improved spatial resolution
and signal-to-noise ratio. The science community, by contrast, has greatly expanded the suite of
retrieved ocean properties beyond the original targets.
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product of physical
depth and attenuation
coefficient; over 1
optical depth, a radiant
flux is reduced by 63%

Today, passive ocean color data are used to quantify surface-layer chlorophyll concentrations,
particulate carbon stocks, and net primary production (McClain 2009). The development and ap-
plication of spectral inversion algorithms to ocean color data have further provided assessments of
absorption by colored dissolved organic matter (CDOM), phytoplankton absorption coefficients,
total particulate backscatter coefficients (Garver & Siegel 1997; Lee et al. 2002; Maritorena et al.
2002; Siegel et al. 2002, 2005; Werdell et al. 2013), and estimates of phytoplankton carbon biomass
and division rates (Behrenfeld et al. 2005, Westberry et al. 2008, Silsbe et al. 2016). The combi-
nation of fluorescence line height data and phytoplankton pigment and carbon data has yielded
insights on iron stress and photophysiology (Behrenfeld et al. 2009, Westberry et al. 2013, Lin et al.
2016). Additional algorithm development has led to new retrievals regarding plankton commu-
nity composition, including phytoplankton size fractions, the slope of the particle size distribution,
and even specific phytoplankton groups, such as coccolithophores, Trichodesmium, and harmful
algal species (e.g., Alvain et al. 2005, Bracher et al. 2009, Kostadinov et al. 2010, Sadeghi et al.
2012, Sathyendranath et al. 2014 and references therein). Furthermore, the sustained time series
of these diverse ocean properties has provided major advances in our understanding of plankton
annual cycles and responses to climate variations and has been instrumental for informing and
testing ocean ecosystem models. Quite simply, the satellite ocean color record has fostered a major
revolution in oceanography.

Despite the advances enabled through ocean color observations, the passive radiometric tech-
nique has several fundamental limitations. Specifically, (a) the top-of-atmosphere signal mea-
sured by the sensors includes contributions from sources other than the target ocean properties,
(b) the ocean color signal provides no information on the vertical distribution of ocean constituents,
(c) measured ocean color is an optically integrated property without a direct signal for separating
the absorption and scattering fractions, and (d ) global sampling is compromised by atmospheric
interferences and solar angle. The following provides additional detail on these limitations.

Large uncertainties in passively retrieved ocean parameters can result from atmospheric cor-
rection errors. Radiances measured by ocean color instruments include, beyond the targeted ocean
properties, contributions from subsurface bubbles, surface foam, reflection from the ocean surface,
and atmospheric constituents, including aerosols, clouds, and air molecules. Easily 90% of the top-
of-atmosphere measured signal can be due to scattering from the atmosphere. A small error in the
estimation and removal of this atmospheric contribution creates a large relative error in the es-
timated water-leaving radiances and associated geophysical retrievals. Similarly, unaccounted-for
contributions from bubbles, foam, and surface reflection degrade retrieval fidelity. Under partic-
ularly challenging conditions (e.g., sunglint, significant aerosol loads, or nearby clouds), attempts
to retrieve ocean properties are abandoned all together.

The ocean color signal is also heavily weighted toward the surface. This results from the
exponential decay of sunlight with depth caused by absorption from water, particles, and dissolved
matter. Similarly, the up-scattered photons suffer the same exponential decay on their path to the
ocean surface. The result is that more than 92% of the ocean color signal emanates from the first
optical depth (10-m geometric depth if the diffuse attenuation coefficient = 0.1 m−1), and 71%
comes from the first half of the first optical depth (5 m for the same case). This limitation of ocean
color can result in significant errors in important water column–integrated ocean properties, such
as chlorophyll concentration (Sathyendranath & Platt 1989, Stramska & Stramski 2005) or net
primary production (Platt & Sathyendranath 1988, Churnside 2015, Jacox et al. 2015).

A further challenge with passive ocean color data is that the strength and spectral character-
istics of retrieved water-leaving radiances represent the integrated signature of multiple factors.
Dominant contributors to the signal include backscattering by suspended particles (bbp) and ab-
sorption by colored dissolved matter (acdm), phytoplankton pigments (aph), and nonalgal particles
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(anap) (note that the absorption and scattering by salt water is a known function of salinity). Re-
trievals of these four fundamental properties and other geophysical parameters derived from them
have an inherent uncertainty that cannot be reduced without additional information. This is-
sue is a driving motivation for the PACE mission’s expanded measurement spectral range and
resolution compared with heritage ocean color missions. Coupling such passive ocean color mea-
surements with active satellite instruments can likewise reduce uncertainties in derived ocean
properties.

Finally, satellite ocean color sampling is significantly limited by atmospheric interferences and
sun angle. On average, clouds obscure 70% of Earth’s ocean area from passive ocean retrievals.
Broken cloud scenes are a significant fraction of the remaining ocean area, and under these con-
ditions, side scatter from nearby clouds can compromise accurate ocean retrievals from otherwise
clear sky pixels. Beyond issues of cloudiness, ocean color retrievals must be abandoned when
strongly scattering aerosol layers are present. Some of these aerosol interferences can compro-
mise ocean color monitoring for extended periods. Examples of such conditions include pollution
outflow from populated regions (e.g., the US Eastern Seaboard, India, and China), systematic dust
events (e.g., Saharan dust outflow at low northern latitudes in the Atlantic and Gobi dust outflow at
midlatitudes in the North Pacific), and long-range and broadly distributed smoke transport (e.g.,
from boreal forest fires in North America and Siberia and agricultural fires from all continents). In
polar regions, low sun angles and cloud conditions (i.e., cloud shadowing of otherwise clear pixels)
can eliminate ocean color sampling altogether from late fall through early spring. Notably, these
high-latitude regions include some of the most productive waters in the global oceans, and the
lack of sampling for a significant fraction of the year can undermine any complete understanding
of plankton annual cycles and biogeochemistry (Behrenfeld et al. 2017).

The intent of this section is not to criticize the passive ocean color approach, but rather to
recognize both its benefits and its inherent weaknesses and thereby highlight where additional
technologies may contribute to improve understanding of global ocean ecosystems. Passive ocean
color radiometry has enabled huge scientific advances and will remain a cornerstone of future
global ocean research. With increases in spectral coverage and resolution from missions like
PACE and work toward increasing the number and coverage of geostationary sensors like the
Geostationary Ocean Color Imager (GOCI) (Ryu et al. 2012, O’Malley et al. 2014), the ocean
color portfolio is set to expand significantly. It is time to consider complementary remote sensing
techniques that will enable additional breakthrough science on issues beyond the reach of passive
radiometry. Lidar is just such a technique and can usher in the next revolution in satellite ocean
remote sensing.

3. LIDAR 101

Airborne lidars have been used for decades to study the atmosphere and the oceans. However, a
long-standing question has been whether space-borne lidars can achieve the sensitivity required
to provide useful ocean products. That question was answered decisively with data from the Cloud
Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument, which has operated in space
since 2006 on the Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO)
platform (Winker et al. 2009). CALIOP is one of the instruments in the A-Train satellite constel-
lation (which includes MODIS) and was designed solely for atmospheric measurements, not as
an ocean lidar. Nevertheless, Hu (2009) developed an innovative technique for retrieving ocean
subsurface particulate backscatter from CALIOP data. But before telling the story of ocean science
breakthroughs made with CALIOP, we provide here some background explanation of the lidar
technique.
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Illustration of the lidar time-of-flight ranging technique. (a) The laser transmits a short (e.g., 15 ns) pulse of laser light that is directed
downward. (b) As the laser pulse travels toward Earth, photons are scattered from air molecules and cloud/aerosol particles in the
atmosphere. (c) Shortly thereafter, the pulse penetrates the ocean, where photons are scattered by water molecules and suspended
particles. Some of the scattered photons in the atmosphere and ocean are collected by the telescope, and the magnitude of this signal is
recorded as a function of time by detectors located in the receiver. (d ) Using the speed of light, time is converted to distance, creating a
vertically resolved profile of received backscatter.

Lidar is an acronym for light detection and ranging. Similar to radar, it employs a time-of-flight
technique to provide range-resolved (i.e., for the current discussion, vertically resolved) measure-
ments of optical properties. Unlike the ocean color technique’s reliance on the sun as a source of
light (thus the term passive remote sensing), lidar uses lasers to generate its own photons, which
are ultimately scattered back to the instrument’s receiver (thus the term active remote sensing).
Because of their durability, the most common lasers used in field-deployed and spaceborne lidar
systems are Nd:YAG lasers, which have a fundamental emission at 1,064 nm and can be frequency
doubled and tripled to 532 and 355 nm, respectively. Figure 1 provides a simple illustration of the
lidar approach, where the geometry depicted is a nadir-viewing configuration. In this example, laser
pulses are directed downward, and a small fraction of the backscattered light is collected in a tele-
scope receiver. In the atmosphere, this backscattered light originates from air molecules and sus-
pended particles, such as cloud droplets or aerosol particles. Similarly, photons from the laser pulse
are backscattered in the ocean by water molecules and suspended particles, such as phytoplankton.
These signals are received by the telescope and imaged onto a high-speed optical detector.

This lidar detector generates a time-varying electrical signal that is proportional to the in-
stantaneous optical power incident on the detector, and this electrical signal is recorded at a high
sampling rate (e.g., 107–108 samples per second). The point of origin of the signal (in other words,
its vertical position in the atmosphere or ocean) is determined using the speed of light. Specifically,
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each sample is assigned a distance from the lidar based on the time difference between the firing of
the laser and the detection of the backscattered signal. Sequential recording of all of these samples
into a data array creates a vertically resolved profile, with each sample reflecting the magnitude of
scattering at a known altitude in the atmosphere or depth into the ocean (Figure 1d). Importantly,
the vertical resolution of a lidar profile is determined by the rate of sampling by its detector. For
example, a rate of 107 samples per second corresponds to the 15-m vertical resolution commonly
used for atmospheric measurements, whereas a rate of 108 samples per second would correspond
to an ∼1-m vertical resolution that is more appropriate for ocean profiling.

From each laser pulse, a lidar acquires a single vertical profile of the atmosphere and ocean.
Combining data from multiple laser pulses creates a time series of profiles. When a lidar is mounted
on a moving platform, such as an aircraft or satellite, this time series maps to a horizontally and
vertically resolved data curtain registered to the flight track (an example is shown in Section 4).
One advantage of active lidar remote sensing is that it creates these curtains of data both day and
night, thus providing opportunities to study diel changes in plankton properties and to continue
observations during periods of polar night. During daylight hours, the contribution to the received
signal from diffusely scattered sunlight is estimated from data acquired between laser pulses and
subtracted from the measured profiles.

Producing useful geophysical data products from the measured lidar signals requires appli-
cation of appropriate calibration factors and postprocessing algorithms. Perhaps more impor-
tantly, the suite of products that can be produced and their accuracy depend on instrument design
(e.g., the number and character of the receiver channels). Our illustration (Figure 1) and dis-
cussion to this point has centered on what is termed the elastic backscatter lidar technique. This
technique relies on backscatter from air and seawater molecules and particles at the same wave-
length as the transmitted laser pulse. In its simplest configuration, an elastic backscatter lidar
measures attenuated backscatter, from which particulate backscatter and attenuation coefficients
are estimated (see the sidebar titled What Does Backscatter Lidar Measure?).

Field-deployed ocean lidars typically expand measurement capabilities beyond those of the
system illustrated in Figure 1 by including additional design elements. Important examples include
the addition of receiver channels that measure laser-induced fluorescence and wavelength-shifted
Raman scattering from specific ocean constituents. Another example is the addition of channels
to measure the polarization of backscattered photons. Lidars capable of generating an array of
geophysical data products have been demonstrated for decades from stationary platforms, ships,
and aircraft. Scientific progress made with airborne lidars motivates some of our thinking about a
future ocean-optimized satellite lidar and is discussed in the next section.

4. ESSAYS FROM THE FIELD

Although elastic backscatter lidar is the simplest technique, the first scientifically meaningful
oceanographic applications of airborne lidar involved the use of fluorescence techniques, first
with chlorophyll (Kim et al. 1973) and later with CDOM (Hoge et al. 1995). The strength of
the chlorophyll fluorescence signal is determined by the concentration of chlorophyll in the wa-
ter and by physiological variations in the quantum yield of fluorescence (Behrenfeld et al. 2009).
Chlorophyll readily absorbs light at 532 nm, which is a commonly transmitted wavelength for
Nd:YAG-based ocean lidars. A fraction of this absorbed light energy is re-emitted as fluorescence
in the 670–690-nm region. Detecting this signal alone does not provide a useful measurement,
however. One must correct the magnitude of signal for factors that are unrelated to phytoplank-
ton, such as variations in laser energy, atmospheric attenuation, and water attenuation. These
corrections can be made by dividing the measured fluorescence by Raman-shifted backscatter

126 Hostetler et al.
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WHAT DOES BACKSCATTER LIDAR MEASURE?

An elastic backscatter lidar (Figure 1) measures a signal (S) that is proportional to attenuated backscatter, which is
the sum of the 180◦ backscatter from water molecules (βM) and suspended particles (βP) multiplied by the two-way
transmittance of the intervening atmosphere and ocean between the lidar and the water volume at a particular
depth, z. The vertical profile of this retrieved signal, S(z), is defined by

S(z) =

⎛
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where CL is the lidar instrument constant (a function of instrument parameters such as laser energy, the optical
efficiency of the receiver, and detector electronic gain), A is the telescope area, H is the height of the lidar above
the ocean, n is the index of refraction of water, KL is the attenuation coefficient of the lidar signal, and TA is the
transmission of the atmosphere. This equation is then used to solve for the two unknowns of interest, βP and KL.

Common oceanographic properties relevant to the lidar measurement are the hemispheric particulate backscatter
coefficient, bbp, and the downwelling irradiance attenuation coefficient, KD. Throughout this review, we discuss lidar
retrievals of bbp. Values of bbp are derived from lidar βP at 180◦ by applying a scattering phase function (e.g., Boss
& Pegau 2001) in the same manner that bbp is calculated from single-angle measurements of backscatter from in
situ instruments. As discussed in detail by Gordon (1982), the relationship between KD and KL is dependent on
the optical properties of the water and the viewing geometry of the lidar. Specifically, KL approaches KD as either
the attenuation coefficient increases or the diameter of the ocean surface viewed by the lidar increases. For airborne
lidar measurements with narrow fields of view, KL will exceed KD under clear open ocean conditions. For satellite
observations, the diameter of the lidar viewing area is sufficiently large that retrieved KL is an excellent proxy for
KD. Accordingly, we use the notation KL in this review when referring to airborne retrievals of attenuation and KD

for satellite retrievals.

from water molecules measured at a different wavelength (Bristow et al. 1981) under the assump-
tion that the above-mentioned factors unrelated to chlorophyll cancel in the ratio (Poole & Esaias
1982). The Raman signal results from the laser exciting the O-H vibrational stretching mode
of water molecules, which causes a frequency shift of 3,418 cm−1 for a fraction of the scattered
photons (for 532-nm laser excitation, the Raman-shifted water backscatter is at 645 nm). The
Raman correction yields a relative, rather than absolute, measure of chlorophyll fluorescence.

Some of the most significant lidar-based field studies of chlorophyll fluorescence were made
by a research group at the NASA Wallops Flight Facility using their Airborne Oceanographic
Lidar (AOL) (Hoge & Swift 1981). That lidar employed a grating spectrometer in the receiver
to isolate the chlorophyll fluorescence and Raman-shifted water backscatter. This water-Raman-
normalized chlorophyll fluorescence signal was used in many studies. For instance, Yoder et al.
(1993) used chlorophyll fluorescence signals acquired with the AOL during flights on a long-range
P-3B aircraft to study spatial scales of the North Atlantic bloom. From these measurements, they
concluded that the pixel resolution of a typical global ocean color satellite mission captures the
dominant scales of variability in the bloom and that mesoscale variability must be taken into account
in the interpretation of ship-based measurements to avoid confusing changes caused by advection
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with those caused by local ecosystem processes. Martin et al. (1994) used data from AOL during
the Iron Enrichment Experiment (IronEx) to test the hypothesis that iron is a limiting factor for
phytoplankton productivity in the equatorial Pacific. AOL fluorescence data were further used by
Hoge et al. (2003) to validate MODIS ocean color fluorescence line height products. Hoge et al.
(2005) subsequently used both AOL chlorophyll and CDOM fluorescence measurements to quan-
tify chlorophyll biomass, using a modification of an ocean color algorithm and matchup data with
ship-based in situ measurements to appropriately scale their fluorescence-to-Raman ratios. Be-
cause fluorescence lidar signals are weak and decay rapidly with depth, the total vertically integrated
fluorescence signals were used in these studies rather than the noisier depth-resolved profiles.

True water column profiling measurements were first made possible with the elastic backscatter
lidar technique described in Section 3. An excellent review article by Churnside (2014) provides a
detailed technical description of the elastic backscatter technique and an overview of the modeling
and interpretation of backscatter signals. Airborne implementations of this technique were demon-
strated in the late twentieth century by groups from around the world, including Australia (Billard
et al. 1986), the United States (Hoge et al. 1988), Russia (Bunkin & Surovegin 1992), and Sweden
(Steinvall et al. 1993). A major challenge to this technique is ambiguity in the interpretation of
the measured signal. The magnitude of the measured signal depends on several known param-
eters (e.g., range and molecular density) and several unknowns: the lidar instrument constant,
the atmospheric transmittance, and the ocean parameters of interest, βP and KL (see the sidebar
titled What Does Backscatter Lidar Measure?). With one measured property (relative attenuated
backscatter) and several unknowns, the elastic backscatter lidar retrieval is an ill-posed problem.

Additional information content was achieved with the addition of polarization sensitivity.
This involves transmitting a linearly polarized laser pulse and optically separating the received
backscatter into components polarized parallel (a co-polarized channel) and perpendicular (a cross-
polarized channel) to that of the pulse (Churnside 2008, 2014). The polarization of 180◦ backscatter
from water molecules and spherical particles is parallel to that of the transmitted laser pulse and is
received in the co-polarized channel. Nonspherical particles, like many phytoplankton, partially
randomize the polarization of scattered photons such that most of the backscatter is received in the
co-polarized channel, and a smaller but measurable signal is received in the cross-polarized chan-
nel. Received photons arising from two or more scattering events are also somewhat randomized in
polarization, regardless of particle shape. Thus, unlike the co-polarized channel, for which there is
ambiguity in the relative contributions of molecular and particulate scattering, the cross-polarized
channel is a more direct measurement of attenuated particulate backscatter. However, the degree
to which the laser pulse is depolarized depends, for example, on the size and shape of the parti-
cles and the relative contributions from multiple scattering events. Challenges also remain with
instrument calibration for both channels and accurate separation of depth-dependent changes in
backscatter from those in attenuation. Because of these issues, early results were typically confined
to relative, rather than absolute, backscatter and depth-averaged estimates of KL.

Scientific application of elastic backscatter lidar began to flourish only in the last decade, largely
based on the work of James Churnside and extensive deployments of the National Oceanic and
Atmospheric Administration (NOAA) Fish Lidar (Churnside et al. 2001). This lidar was originally
designed for the detection and quantification of fish schools (Churnside et al. 1997, 2001, 2003)
but was later applied to retrieving ocean inherent optical properties. Early scientific contributions
that used the NOAA lidar included several studies of subsurface plankton layers (e.g., Churnside &
Ostrovsky 2005, Churnside & Donaghay 2009). More recently, the focus has been on overcoming
the ambiguity in the elastic backscatter retrieval through bio-optical modeling. Churnside
et al. (2014) employed a parameterization based on chlorophyll concentration to estimate the
ratio of attenuation to backscatter, thereby reducing the retrieval of βP and KL to solving for a

128 Hostetler et al.



MA10CH06-Hostetler ARI 21 October 2017 10:21

HIGH-SPECTRAL-RESOLUTION LIDAR: TWO MEASUREMENTS, TWO
UNKNOWNS

HSRL designs vary from instrument to instrument, but the fundamental approach is the same. We consider here
the simplest of HSRL architectures, which has two detection channels. One of these channels is more sensitive
to particulate backscatter from the ocean (the middle peak in Figure 2), and one is more sensitive to molecular
backscatter from seawater itself (the right and left peaks in Figure 2). This separation of the backscatter signal is ac-
complished in the lidar receiver (Figure 1) with a spectral filter (e.g., an interferometer) that has a well-characterized
frequency response. The two time-resolved signals are algebraically combined to form two profiles proportional
to backscatter at 180◦. The first of these derived profiles, SM(z), represents photons backscattered by water (βM):

SM(z) = CM

[
A

(nH + z)2

]
βM

{
exp

[
−

z
∫
0

KL(z′)dz′
]}2

(TA)2,

where CM incorporates instrument constants relevant to this molecular profile reconstruction. The second profile,
SP(z), represents photons backscattered by suspended particles in the ocean (βP):

SP(z) = CP

[
A

(nH + z)2

]
βP(z)

{
exp

[
−

z
∫
0

KL(z′)dz′
]}2

(TA)2,

where CP is the instrument constant for the particulate profile reconstruction. Because the density of seawater
molecules is relatively constant in the near-surface ocean, the value of βM is well known. Thus, the value of KL can
be calculated from changes in SM(z) from one depth interval to the next through the water column:

KL(z) = −1
2

d
dz

ln
[
(nH + z)2 SM(z)

]
.

Importantly, the influence of attenuation, KL, and atmospheric transmission, TA, are the same for SP(z) and SM(z).
Consequently, these two terms cancel in the ratio SP(z):SM(z), allowing the attenuation-corrected profile of partic-
ulate backscatter at 180◦ to be calculated as

βP(z) = βM

[
CM

CP

] [
SP(z)
SM(z)

]
,

where the only scaling factors required are estimates of βM (well known) and the CM:CP ratio (which can be
determined with high accuracy). βP is then scaled to hemispheric backscatter, bbp (see the sidebar titled What Does
Backscatter Lidar Measure?).

In summary, the power of the HSRL technique is that it provides two measurements to solve for two unknowns
and requires only relative (i.e., the CM:CP ratio), rather than absolute, calibration. This contrasts critically with the
elastic backscatter lidar technique, which provides only the combined SP(z) + SM(z) profile and therefore requires
absolute calibration, correction for the atmospheric transmission, and either ancillary data or model assumptions
about the relationship between bbp and KL to retrieve either one.

single unknown, as is done for vertically resolved atmospheric aerosol retrievals (Fernald 1984).
Churnside (2015) extended this bio-optical approach with an iterative scheme that also enabled
the retrieval of chlorophyll concentration. This technique was then used to study plankton layers
in the Arctic (Churnside & Marchbanks 2015) and vertical distributions of primary production
(Churnside 2016).

Application of bio-optical modeling advanced the elastic backscatter lidar technique from
retrievals of relative backscatter and depth-averaged attenuation to quantitative depth-resolved
ocean properties. However, the impact of errors in the chlorophyll-based parameterization has not
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been assessed. The two parameterized unknowns, βP and KL, can vary independently (e.g., with
CDOM concentration) (Siegel et al. 2005). This affects KL but not βP and violates the retrieval
assumptions. Unfortunately, retrieval errors also accumulate as the retrieval proceeds downward
through the profile, because the error at a particular depth interval is a function not only of the
retrieval error for that interval, but also of the accumulated error from intervals higher in the
column. Furthermore, the fundamental problem of absolute calibration of the ocean signal re-
mains. Calibration in this sense includes quantifying the product of the square of the atmospheric
transmittance and the instrument constant (see the sidebar titled What Does Backscatter Lidar
Measure?). For the typical 300-m flight altitude of many airborne ocean lidars, the near-unity
atmospheric transmittance can be estimated with little error, and the instrument constant can be
determined using preflight measurements (Lee et al. 2013). However, a satellite lidar retrieval of
ocean properties must account for the transmittance of the entire atmosphere, which changes con-
tinuously along the orbit track owing to highly variable aerosol and cloud layers. Consequently,
the simple calibration approach used for low-altitude aircraft measurements cannot be applied in
space without large errors in retrieved ocean properties.

A significant leap in retrieval accuracy and information content has recently been made by
applying the high-spectral-resolution lidar (HSRL) technique to ocean profiling. This technique
has been used for decades in ground-based (e.g., Shipley et al. 1983) and airborne (Esselborn et al.
2008, Hair et al. 2008, Bruneau et al. 2015) aerosol and cloud measurements. It is based on the
difference in the wavelength distributions of backscatter from particles and molecules (Figure 2).
Backscatter from particles occurs at the same wavelength as the transmitted laser pulse. By contrast,
backscatter from molecules, such as seawater, is shifted and broadened in wavelength owing to
interactions between the transmitted pulse and density fluctuations from sound waves (Hickman
et al. 1991). This phenomenon is known as Brillouin scattering, and at 532 nm, the wavelength

Particles backscatter light at
the same wavelength as the 

transmitted laser pulse

Backscatter from seawater molecules
is shifted slightly in frequency due to

 Brillouin scattering processes
~0.007-nm (7.5-GHz)

shift at 532 nm
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Figure 2
The high-spectral-resolution lidar technique (see the sidebar titled High-Spectral-Resolution Lidar: Two
Measurements, Two Unknowns). This method relies on the spectral separation between 180◦ backscatter
from seawater and suspended particles (e.g., phytoplankton). The spectrum of particulate backscatter (green)
is nearly identical to that of the transmitted single-frequency laser pulse. Molecular backscatter (blue), by
contrast, is shifted (by ∼0.007 nm or 7.5 GHz at 532 nm) and broadened by Brillouin scattering processes.
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shift is approximately 0.007 nm (Figure 2). This separation of water and particulate backscatter
is fundamental to the HSRL technique. It provides two lidar profiles from which to retrieve the
two unknowns, βP and KL, thus enabling a well-posed rather than ill-posed retrieval, as discussed
in the sidebar titled High-Spectral-Resolution Lidar: Two Measurements, Two Unknowns. Also
discussed in the sidebar is the equally important calibration accuracy of the HSRL technique.
The particulate backscatter retrieval depends on instrument constants only and is not affected by
variability in atmospheric transmittance.

The first HSRL retrievals of diffuse attenuation, KL, and particulate backscatter, bbp, were made
during the 2012 Azores campaign (Behrenfeld et al. 2013), the 2014 Ship-Aircraft Bio-Optical
Research (SABOR) experiment (Hair et al. 2016, Schulien et al. 2017), and the 2015 and 2016
North Atlantic Aerosols and Marine Ecosystems Study (NAAMES) deployments. Figure 3 shows
atmospheric and ocean retrieval curtains from a flight of the NASA HSRL-1 instrument during
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Figure 3
Along-track curtain plots acquired with the NASA airborne HSRL-1 instrument in May 2016 during a NAAMES deployment.
(a) Vertically resolved aerosol backscatter in the atmosphere along the flight track in the North Atlantic. (b) Vertically resolved
attenuation coefficients in the ocean along the flight segment between the dashed lines. From 35◦N to ∼40◦N, the transect sampled
oligotrophic conditions with significant subsurface features north of 38◦N. A strong near-surface bloom was encountered between
∼41◦N and ∼43◦N, followed by more mesotrophic waters with significant subsurface features at depths between ∼10 and 20 m.
Abbreviations: HSRL-1, High-Spectral-Resolution Lidar 1; NAAMES, North Atlantic Aerosols and Marine Ecosystems Study; sr,
steradian. Adapted from Hair et al. (2016).
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NAAMES. These data, acquired from a flight altitude of 9 km, illustrate the calibration advantage
of the HSRL technique. Similarly to a satellite viewing geometry, the optical paths traveled by
the photons to and from the ocean include attenuating layers of smoke in the free troposphere
and marine aerosol in the boundary layer, producing large variations in the strength of the ocean
backscatter signals along the flight track. This would create a significant calibration challenge for
the elastic backscatter technique but not for the HSRL (Hair et al. 2008, 2016).

The SABOR campaign provided an opportunity to compare HSRL-1 ocean retrieval products
with independent measurements of the same properties. For example, Figure 4a shows an along-
track comparison of HSRL-derived KL at a depth of 10 m and MODIS KD values collected on
the same day, with excellent agreement between products. The HSRL-1 ocean products also
show excellent agreement with optical properties measured at sea during SABOR. For example,
Figure 4c and Figure 4d show comparisons of depth-resolved bbp values from HSRL-1 with
near-coincident in situ data from optical profiling casts at the SABOR ship stations (Schulien et al.
2017). These comparisons with MODIS and in situ data have correlation coefficients of ≥0.94
and slopes of ∼1.0, demonstrating the accuracy of HSRL ocean retrievals.

Schulien et al. (2017) used in situ and HSRL-1 data from SABOR to quantify the value of
vertically resolved measurements of bbp and KD for improving estimates of net primary production
relative to estimates based solely on the surface properties retrievable from passive ocean color
data. Analysis of SABOR data indicated that surface-weighted ocean-color-like properties yielded
estimates of water column–integrated net primary production that consistently underestimated
values calculated with vertically resolved data, with errors of up to 54% (Schulien et al. 2017).
The vertical plankton structure during SABOR was modest at best, and previous estimates of net
primary production errors associated with a wider range in vertical structure indicate that such
errors can exceed 100% (Platt & Sathyendranath 1988, Hill & Zimmerman 2010, Churnside
2015). These findings demonstrate the importance of plankton vertical structure for accurate
assessments of ocean plankton stocks, productivity, and carbon cycling.

In addition to retrieving ocean optical and plankton properties, lidar measurements might also
provide insight into physical mixing processes (Zawada et al. 2005). Specifically, the expectation is
that particle concentrations in the active turbulent mixing layer will be homogeneous with depth.
Accordingly, detection of subsurface scattering layers can be used to delineate the maximum
depth of active mixing. This constraint on active mixing can be used as a global data set for testing
physical mixing models and has the potential to significantly improve understanding of dynamic
relationships among physics, plankton biomass, and bloom trajectories.

5. THE DAWN OF SATELLITE LIDAR IN OCEANOGRAPHY

CZCS was certainly not the best satellite sensor ever built to globally sample surface ocean proper-
ties, but it was the first. The idea of deriving plankton properties from remotely detectable optical
signals significantly predates CZCS, and the concept had been demonstrated from aircraft (Clarke
et al. 1970). But eventually the time comes to bite the bullet and launch a proof-of-concept instru-
ment into space. The launch of CZCS was that proof of concept for ocean color and a landmark
event. The dawn of the satellite lidar era in oceanography shares some parallels with this CZCS
story in that the lidar approach was initially demonstrated with airborne sensors (to a far greater
degree than CZCS, in fact), and the first satellite demonstration was based on an instrument with
limited capabilities. Unlike the CZCS story, however, the satellite lidar instrument was designed
with no intention of retrieving properties of the ocean. That lidar was CALIOP.

As discussed above, CALIOP is a simple elastic backscatter lidar with emissions at 532 and 1,064
nm, but in-water attenuation of the latter band is too great to provide any useful information about
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Figure 4
Results from the SABOR field campaign, which encompassed 24 flights with the HSRL-1 and 23 ocean sampling stations on the R/V
Endeavor. (a) MODIS KD values at 488 nm (Lee et al. 2005) for July 18, 2014 (background color), and KL retrieved with HSRL-1 along a
flight track on the same day (white outlined data). HSRL-1 KL values were calculated at a depth of 10 m and converted to 488 nm by
accounting for the difference in pure seawater absorption. (b) KL–KD matchup data from HSRL-1 and MODIS for all flights during the
SABOR campaign. (c) Comparison of bbp profiles from HSRL-1 (532 nm, red line) and in situ measurements (529 nm, black line) from a
WET Labs ECO BB3 instrument. (d ) Matchup comparison of HSRL-1 and in situ bbp data from the 16 offshore SABOR stations
where overboard optical casts had near-coincident HSRL measurements. Colors indicate the optical depth of each sample.
Abbreviations: ECO, Environmental Characterization Optics; HSRL-1, High-Spectral-Resolution Lidar 1; MODIS, Moderate
Resolution Imaging Spectroradiometer; SABOR, Ship-Aircraft Bio-Optical Research. Panels a and b adapted from Hair et al. (2016);
panels c and d adapted from Schulien et al. (2017).

subsurface ocean properties. CALIOP’s 23-m vertical resolution was designed for atmospheric
science applications and is too coarse for ocean profiling applications. In addition, backscatter
from the ocean surface creates an artifact in CALIOP’s co-polarized subsurface data. CALIOP
also lacks the advanced capabilities of an HSRL system, so it does not provide the direct information
required for independently separating the attenuation and backscattering components from the
retrieved subsurface signal. However, what CALIOP does provide is a space-based measurement
of an ocean signal at 532 nm from its cross-polarization channel. In addition, this ocean signal
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is measured at a constant viewing angle, is independent of solar angle, and is retrieved both day
and night and through significant cloud and aerosol layers. The CALIOP orbit also has a 16-day
repeat cycle that provides a globally representative sampling of ocean ecosystems (Figure 5a).
Thus, although CALIOP was not the optimal lidar system for observing the ocean, it has yielded
not only the first space-based proof of concept, but significant scientific results as well.
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The first challenge in using CALIOP data for oceanographic research was isolating the subsur-
face signal in a calibrated and quantitative manner. This was accomplished by employing the ratio
of cross-polarized to co-polarized signal returns (the depolarization ratio), which is well calibrated
through the atmosphere and ocean column because both channels respond similarly to absorption
and scattering losses. The algorithm employed the sum of the depolarization ratio from the first
few bins below the ocean surface, an estimate of the backscatter from the ocean surface itself, KD

values from MODIS, and assumptions based on empirical data to generate a surface-weighted
column estimate of bbp (for details, see the supplementary materials for Behrenfeld et al. 2013).

The second challenge in using CALIOP data was to validate the ocean products. An ideal
opportunity for this arose from a NASA-funded airborne field campaign based in the Azores that
was coupled to ship-based optical measurements conducted as part of a UK Atlantic Meridional
Transect cruise (Behrenfeld et al. 2013). The validation component of the lidar study focused on
ship, aircraft, MODIS, and CALIOP measurements of bbp. For the overall ship transect data, the
study found a significantly better agreement between in situ bbp and CALIOP retrievals (r2 = 0.54)
than for the MODIS ocean color retrievals (r2 = 0.13 and 0.27 for different inversion algorithms).
For the three aircraft flights of the campaign, CALIOP retrievals were well aligned with airborne
HSRL-1-based bbp data (r2 = 0.58). Overall, these results were viewed as highly encouraging,
given that the ship, aircraft, and satellite data diverged significantly in spatial resolution and were
not temporally coincident.

Given the success of the field validation analysis, Behrenfeld et al. (2013) then provided the
first published global map of surface bbp from a space-based lidar and associated estimates of
phytoplankton carbon biomass (Cphyto) (Figure 5b) and total particulate organic carbon (POC).
These data were compared with MODIS-based bbp values from the Garver-Siegel-Maritorena
(GSM) inversion algorithm (Garver & Siegel 1997, Maritorena et al. 2002, Siegel et al. 2002) and
the Quasi-Analytical Algorithm (QAA) (Lee et al. 2002) and associated Cphyto and POC values.
The CALIOP-based products exhibited similar global distributions and seasonal cycles as the
MODIS-based products but also highlighted some inconsistencies. For example, the CALIOP
global POC data showed a dual-mode frequency distribution similar to that of the QAA but with
peaks at lower POC concentrations, and a low-POC peak (∼45 mg C m3) that was consistent
with (but of smaller magnitude than) the peak in GSM data (see figure S4 in Behrenfeld et al.
2013).

The Behrenfeld et al. (2013) study focused on the utility of satellite lidar measurements for
global ocean studies, but lidar measurements may be especially important for specific regions and

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 5
Sampling of the global ocean with CALIOP. (a) CALIOP ground tracks achieved within a single 16-day
repeat cycle. The red lines indicate the 55–65◦N section used to compare CALIOP and MODIS data
coverage in panel d. (b) CALIOP-based climatological annual average phytoplankton biomass (Cphyto) for the
2006–2012 period reported by Behrenfeld et al. (2013). (c) Location of all field bbp data in the NASA
SeaBASS data archive. These data required 13 years to collect yet still left most of the ocean unsampled in
space and time. By comparison, a satellite lidar can provide globally representative sampling of bbp every
16 days that can be used for ocean science investigations and to refine algorithms for passive ocean color
retrievals. (d ) Comparison of CALIOP and MODIS pixel coverage per month for the 55–65◦N section
identified in panel a. The filled and unfilled symbols indicate the total number of 1◦ latitude ×1◦ longitude
ice-free ocean pixels per month with valid CALIOP and MODIS bbp data, respectively. Abbreviations:
CALIOP, Cloud-Aerosol Lidar with Orthogonal Polarization; MODIS, Moderate Resolution Imaging
Spectroradiometer; SeaBASS, Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) Bio-Optical Archive and
Storage System. Panel d adapted from supplementary information in Behrenfeld et al. (2017).
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scientific questions. One such example is an improved understanding of high-latitude ecosystems.
As noted above, high-latitude regions present particularly challenging conditions for passive ocean
color sensors. They tend to be plagued by persistent cloud cover, solar geometries change signif-
icantly during the year, and periods of polar night prevent any passive measurements at all over
broad areas. Because of these challenges, incomplete ocean color records at high latitudes can
completely miss critical events in plankton annual cycles. Here again, CALIOP has provided the
first demonstration of how active lidar measurements from space can complement passive ocean
color data to yield new scientific insights.

Convergence of CALIOP ground tracks yields the most dense spatial sampling at high latitudes
(Figure 5a), providing 1◦ binned spatial coverage comparable to that of MODIS in both the
north and south polar regions during late-spring to early-autumn months and better coverage
from the late-autumn to early-spring period (Figure 5d ). With these data, Behrenfeld et al.
(2017) demonstrated that initiation of polar annual phytoplankton blooms generally occurs before
conditions are suitable for passive ocean color retrievals. The CALIOP data further provided the
clearest demonstration to date that annual cycles in polar phytoplankton biomass are driven, at
the monthly timescale, by the rate of acceleration and deceleration in phytoplankton division
rates. Accordingly, the climax of the bloom coincides with division rate maxima rather than with
a decrease in division. The study also showed that interannual variability in the amplitude of the
phytoplankton annual biomass cycle is related to the overall range in division rate between winter
minima and summer maxima. Finally, the lidar data were used for a complete annual accounting
of the relative contributions of ecological processes and ice cover changes to a decade of variations
in polar phytoplankton biomass.

The lidar era in satellite oceanography has arrived.

6. A NEW LIGHT ON THE HORIZON

There are 1,107 words in the previous section; perhaps the three most important of these are
“proof of concept.” CALIOP provides a tantalizing glimpse of where lidar measurements can take
us, but it is not a blueprint for future ocean satellite lidars. Transitioning a new measurement
from ground-based observations to an on-orbit system has been the demise of many exciting new
remote sensing concepts. The simple fact is that satellite missions are expensive, so launching
a totally new technology is unnervingly risky compared with iteratively improving an existing
approach. CALIOP has unintentionally provided this key step from a field-verified “good idea” to
an on-orbit demonstrated capability. CALIOP is for satellite lidar what CZCS was for ocean color.
It has shown us that an ocean signal is detectable from a space lidar. Now, it is time to think about
what we can really achieve with a satellite lidar when it is actually built for ocean measurements.

There are three obvious targets for realizing major scientific advances from a space lidar, and
each of these has airborne heritage: (a) improved vertical resolution of the detected signal, (b) an
expanded set of detection bands, and (c) additional laser emission wavelengths. We discuss some
of the science applications of these expanded capabilities in the following paragraphs.

Water column vertical structure is clearly resolved at 1–3-m resolution with airborne lidar
sensors, and a similar scale can be envisioned for a future satellite lidar. With such capabilities,
phytoplankton and total suspended particulate distributions within the upper light field could be
characterized globally to enable improved estimates of net primary production and carbon stocks.
A counterpart to improved vertical resolution is increased penetration of the retrieved signal. The
maximum depth from which valid retrievals can be achieved with a satellite lidar is a function
of multiple factors, including laser pulse energy and repetition rate, laser emission wavelength,
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telescope size, horizontal averaging, and the optical clarity of the water column. As a rule of thumb,
it is anticipated that an ocean-optimized satellite lidar can provide valid ocean properties to 3 optical
depths. Such retrieval depths have already been demonstrated with airborne lidar. Thus, a space
lidar can detect plankton properties within as much as 65% of the euphotic zone. Importantly,
phytoplankton within this upper layer are the dominant contributors to water column–integrated
primary production, and vertical distribution within this layer is a significant source of uncertainty
in ocean color–based assessments of production (Platt & Sathyendranath 1988, Hill et al. 2013,
Zhai et al. 2012, Schulien et al. 2017). In the permanently stratified ocean (roughly the ocean
region between 40◦N and 40◦S), deep chlorophyll maxima are often found very near the bottom
of the photic zone (i.e., >3.5 optical depths) (Cullen 1982, 2015) and thus are beyond the reach
of a satellite lidar. In many cases, these deep chlorophyll maxima predominantly reflect light-
driven changes in phytoplankton chlorophyll:carbon ratios (Fennel & Boss 2003) and can be
effectively reconstructed with a photoacclimation model (e.g., Westberry et al. 2008). In other
cases, deep chlorophyll maxima reflect changes in phytoplankton biomass, and characterizing these
features will require augmenting satellite lidar measurements with additional technologies (see
Section 8).

An ocean-optimized space lidar must also depart from the simple elastic backscatter approach
employed by CALIOP and include additional measurement bands allowing direct separation of
attenuation and backscattering coefficients through the water column. The HSRL technique (Sec-
tion 4) represents one approach for achieving this requirement and has been extensively demon-
strated in the field. The ability to directly separate attenuation and backscattering will greatly
improve the accuracy of future ocean products and will make the lidar retrievals independent
of ocean color data or bio-optical models. Accordingly, the lidar ocean products will provide
an unprecedented global test data set (in terms of temporal and spatial coverage) for improving
ocean color geophysical retrievals. Currently, development and validation of ocean color algo-
rithms rely on field-collected data, which are sparse in time and terribly undersampled in space
(Figure 5c).

Another exciting avenue for advancement is expansion of the detection waveband set to in-
clude measurements of lidar-stimulated fluorescence. Airborne lidar systems have a long history of
chlorophyll fluorescence measurements (Section 4). A similar space-based fluorescence measure-
ment could serve multiple scientific applications. First, the total fluoresced light can be quantita-
tively related to pigment concentration. Because incident sunlight causes significant changes in the
quantum yield of fluorescence (a process referred to as nonphotochemical quenching), lidar-based
assessments of pigment concentration will be most accurate for measurements made on the dark
side of Earth. These chlorophyll assessments, in turn, can be used to distinguish phytoplankton
pigment contributions to measured KD from that of other absorbing compounds. An important
benefit of the lidar fluorescence measurements compared with passive fluorescence measurements
is that, obviously, the passive measurements cannot be collected at night and thus suffer from
uncertainties in nonphotochemical quenching.

The benefit of a lidar chlorophyll fluorescence channel goes beyond simply providing an es-
timate of pigment concentration. An ability to measure unquenched fluorescence at night could
improve descriptions of daytime nonphotochemical quenching variability and thus allow more
accurate interpretations of ocean color–based fluorescence data. Lidar-based nonphotochemical
quenching assessments could further be evaluated in terms of different types of phytoplankton
assemblages, thus providing new insight on photoacclimation strategies. A final benefit from a
lidar fluorescence channel is that it may provide information on iron-limited growth conditions,
an application that will require coincident ocean color data. Iron stress in the presence of high
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macronutrients results in the synthesis of nonfunctional pigment-protein complexes that affect
fluorescence quantum yields (Behrenfeld et al. 2006, Schrader et al. 2011, Behrenfeld & Milli-
gan 2013). Quantum yields could be assessed by normalizing lidar-measured fluorescence signals
to ocean color–based pigment absorption at 532 nm (a product from a spectral inversion algo-
rithm), potentially allowing detection of these unique complexes and thus mapping of iron-stressed
populations.

A final avenue for advancing ocean satellite lidar capabilities is increasing laser spectral emis-
sions to a three-wavelength system of 355, 532, and 1,064 nm. The addition of a 355-nm source
could provide multiple benefits. First, under oceanographic conditions of low CDOM, 355 nm
can penetrate deeper into the water column than 532 nm. Perhaps more importantly, the com-
bination of 355 and 532 nm can provide critical information on water column constituents. On
the absorption side, CDOM exhibits an exponential increase in absorption with decreasing wave-
length, whereas phytoplankton pigment absorption peaks in the visible wavelengths and tends to
decrease in the near-ultraviolet wavelengths. Thus, the 355-nm lidar measurement would enable
some separation skill between absorption by CDOM and absorption by pigments. Differences
in backscatter coefficients at 355 and 532 nm could similarly provide information on the slope
of the particle size distribution, enabling improved assessments of phytoplankton biomass and
total particulate carbon stocks. Here again it is important to emphasize the value of the HSRL
technique, as the accuracy of these important advanced geophysical retrievals will be significantly
compromised for a simple elastic scattering lidar.

In closing this section, we note that cloud and aerosol measurements from the ocean-optimized
lidar described above would have powerful crosscutting applications in science at the ocean-
atmosphere interface and atmospheric science in general. As highlighted in the Intergovernmen-
tal Report on Climate Change report (IPCC 2013), clouds and aerosols are the largest drivers of
uncertainty in estimates of Earth’s energy budget. Accurate measurements of aerosol extinction
at 532 nm from a spaceborne HSRL would provide significantly improved estimates of aerosol
direct radiative effects compared with CALIOP (Thorsen et al. 2017). The 532-nm extinction
measurements would also provide a much improved satellite-based proxy for the concentration
of cloud condensation nuclei than is possible from passive sensors (Stier 2016), benefiting studies
of aerosol-cloud interactions. A polarization-sensitive lidar with elastic backscatter channels at
1,064 nm and HSRL channels at 532 nm would provide curtains of aerosol type [i.e., marine
aerosol, continental pollution, biomass smoke, or dust (Burton et al. 2012, 2014)], which would
be useful for assessing and improving chemical transport models. The addition of HSRL channels
at 355 nm would enable vertically resolved retrievals of aerosol effective radius and concentra-
tion (Müller et al. 2014, Sawamura et al. 2017), further improving retrievals of cloud conden-
sation nuclei and providing useful data for air quality applications. High vertical resolution and
HSRL capability will also significantly improve retrievals of cloud microphysical properties (phase,
droplet concentration, and liquid water content), building on the work of Hu (2007) and Hu et al.
(2007).

As a primer for thought and discussion regarding a future mission, Table 1 provides a “shopping
list” summary of the enhanced capabilities described in this section and a list of added scientific
value associated with each.

7. AN OPTIMIZED OCEAN-ATMOSPHERE SATELLITE LIDAR

In this section, we put on our engineering hats to consider design elements of an ocean-atmosphere
optimized lidar with the capabilities discussed in Section 6, with our particular example (Figure 6)
based on the HSRL technique. In this design, the pulsed laser transmitter is seeded by a low-power
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Table 1 Summary of the increase in science value with capability starting from a CALIOP-like base case

Sensor capability Added value to ocean science
Added value to atmospheric

science

CALIOP
equivalent

Elastic backscatter technique at 532
and 1,064 nm

Depolarization at 532 nm
Vertical resolution of 23 m for the
ocean and 30 m for the
atmosphere

Surface-weighted bbp and KD (not
independent)

Sampling through aerosol layers and
tenuous clouds

Sampling regardless of sun angle
Day-night comparisons possible

Aerosol and cloud vertical
distributions and properties
(optical, microphysical, and bulk)
derived from attenuated
backscatter and depolarization
profiles

Above plus Vertical resolution of <3 m Crude estimates of profile-average KD;
unknown error resulting from vertical
variability in KD and bbp

Crude bbp profiling capability
(calibration will be an issue)

Improved estimates of cloud
microphysical properties (phase,
droplet concentration, and liquid
water content)a

Above plus HSRL at 532 nm
Depolarization at 1,064 nm

Accurate independent profiles of bbp

and KD at 532 nm
Calibration accurate through ocean
column

Estimates of Cphyto, POC, and
chlorophyll concentration

Vertically resolved estimates of net
primary production

Accurate independent profiles of
aerosol extinction and backscatter

Improved aerosol typing
Estimates of cloud condensation
nuclei concentration

Advanced estimates of cloud
microphysical properties

Above plus Chlorophyll fluorescence Improved estimates of chlorophyll
concentration

Nonphotochemical quenching
Iron stress

Above plus HSRL at 355 nm
Depolarization at 355 nm

Accurate independent profiles of bbp

and KD at 532 and 355 nm
Independent estimates of CDOM and
pigment absorption

Information on the slope of the
particle size distribution

Increased accuracy in vertically
resolved net primary production

Aerosol effective radius and
concentration

Particulate air quality estimates
Advanced cloud condensation
nuclei estimates

The first row of the table represents a CALIOP-like base case, which is then followed by additional rows associated with an added capability and the value
added for ocean and atmospheric sciences. Abbreviations: CALIOP, Cloud-Aerosol Lidar with Orthogonal Polarization; CDOM, colored dissolved
organic matter; HSRL, high-spectral-resolution lidar; POC, particulate organic carbon.
aRetrievals of droplet concentration and liquid water content require additional coincident passive radiometric measurements.

continuous-wave 1,064-nm laser to ensure narrowband frequency-stable output. The fundamen-
tal 1,064-nm output of the pulsed laser is frequency doubled to 532 nm and tripled to 355 nm,
providing output pulses at all three wavelengths. The receiver begins with a telescope of 1–1.5-m
diameter, similar to CALIOP. Light collected by the telescope is focused into a field stop that
defines the receiver field of view, which closely matches the divergence of the transmitted beam to
minimize collection of diffusely scattered sunlight while still collecting most of the backscattered
laser light. The light is then re-collimated into a small-diameter beam (e.g., 2–3 cm) in the re-
ceiver. Dichroic beam splitters separate the various wavelengths for additional optical processing.
Narrowband solar rejection filters reduce the magnitude of scattered sunlight remaining within
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Figure 6
Simplified block diagram of the primary components in an advanced spaceborne ocean-atmosphere-optimized lidar.

the field of view. Polarizing beam cubes resolve the backscatter into polarization components
that are parallel and perpendicular to the linear polarization of the transmitted laser pulses.

The HSRL technique is implemented in the design (Figure 6) using interferometric opti-
cal filters separating the received backscatter onto two detectors: one that measures backscatter
predominantly from water or air molecules (the molecular channel) and one that measures a
combination of particulate and molecular backscatter (the particulate channel). As discussed in
Section 4, the two HSRL channels essentially provide two equations to solve for two unknowns:
KD and βP. Finally, the design includes a channel for measuring the chlorophyll fluorescence
signal in the 680-nm region.

The detection electronics would sample the measured signals at a vertical resolution of 1 m,
and the laser temporal pulse width would correspond to a vertical resolution of 1–2 m, depending
on the design of the laser. The fundamental along-track horizontal resolution is determined by
the receiver field of view and laser repetition rate. A field of view set to achieve a 90-m footprint
diameter at Earth’s surface would be consistent with CALIOP. Setting the laser repetition rate to
>80 pulses per second achieves a footprint separation of <90 m, ensuring contiguous along-track
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sampling. With only a 90-m swath, orbital geometry must be considered to appreciate horizontal
sampling. Our envisioned lidar mission would have a sun-synchronous orbit similar to that of
CALIOP, which provides ∼15 Earth orbits per day, repeats these orbits every 16 days, and yields
the global sampling grid shown in Figure 5a.

The ocean-atmosphere-optimized lidar design described here would enable unprecedented
scientific advances. To date, the European Space Agency has built a 355-nm HSRL scheduled
to launch on the Earth Cloud Aerosol and Radiation Explorer (EarthCARE) satellite in 2019.
NASA has also invested significantly in the maturation of lidar technology, achieving all of the
capabilities mentioned above and in Section 6. In fact, one lidar design for the Aerosols-Clouds-
Ecosystems (ACE) mission concept incorporates all of the capabilities discussed above except for
the chlorophyll fluorescence channel. Other NASA programs have contributed to the maturation
of that design, and an airborne prototype with the capabilities recommended herein is due for
flight demonstration in 2018. The bottom line is that a satellite ocean-atmosphere-optimized
lidar can be realized in the near future.

8. VISION OF A VIRTUAL CONSTELLATION

Oceanographic research with satellite lidars is in its infancy. We hope that this review has pro-
vided a useful description of the lidar technique, an interesting narrative of its history in marine
applications, an exciting account of recent achievements with the satellite CALIOP sensor, and
some forward-looking ideas on future scientific pursuits with an advanced satellite lidar based on
current technological capabilities.

Throughout this review, we have contrasted lidar measurements with traditional ocean color
observations, but the most important message to take home from these comparisons is that each
approach has its strengths and weaknesses. By focusing on the strengths of each technology, we can
envision a synergistic future global ocean-observing constellation. At the core of this constellation
is the pairing of an ocean-optimized HSRL-type satellite lidar and an advanced ocean color sensor
(such as that planned for the PACE mission). This combination would maximize global spatial
and temporal data coverage, introduce the vertical dimension into ecosystem characterizations,
and allow cross-instrument data comparisons for algorithm development, improved ocean color
atmospheric corrections, and an expansion in the diversity of retrieved geophysical properties.

Adding a multi-angle polarimeter to this constellation yields additional synergies. Polarimeters
measure polarized radiances in multiple spectral bands and allow detailed characterization of
aerosol optical depths and single-scatter albedo. These data would provide important constraints
for ocean color atmospheric corrections and allow extrapolation of lidar atmospheric data between
measurement curtains. Polarimetry can also distinguish mineral and biogenic particles in the upper
water column (Loisel et al. 2008). Reciprocally, ocean color measurements provide constraints
on water-leaving contributions to the signal measured by the polarimeter. The final piece of this
integrated observing system is a global array of in situ Bio-Geo-Argo floats, providing sustained
and coincident field validation data for the satellite sensors and a means for extending the satellite
data to depths beyond the reach of a lidar.

Figure 7 is an artistic rendering of our envisioned ocean-observing system. Although an ocean-
optimized lidar mission has yet to be commissioned, a two-instrument PACE mission could pro-
vide the advanced ocean color sensor and polarimeter, and components of a global Bio-Geo-Argo
array are being deployed [e.g., the Southern Ocean Carbon and Climate Observations and Mod-
eling (SOCCOM) program (https://soccom.princeton.edu)] or in development.
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Figure 7
Artistic rendering of a future ocean-observing system encompassing in situ Bio-Geo-Argo floats and a satellite constellation that
includes a high-spectral-resolution ocean-optimized lidar, an advanced ocean color sensor, and a multi-angle polarimeter.
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