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In this study, we identify a seasonal bias in the ocean color satellite-derived remote sensing reflectances
(Rrs(λ); sr−1) at the ocean color validation site, Marine Optical BuoY. The seasonal bias in Rrs(λ) is present to
varying degrees in all ocean color satellites examined, including the Visible Infrared Imaging Radiometer Suite,
Sea-Viewing Wide Field-of-View Sensor, and Moderate Resolution Imaging Spectrometer. The relative bias in Rrs

has spectral dependence. Products derived from Rrs(λ) are affected by the bias to varying degrees, with particulate
backscattering varying up to 50% over a year, chlorophyll varying up to 25% over a year, and absorption from
phytoplankton or dissolved material varying by up to 15%. The propagation of Rrs(λ) bias into derived prod-
ucts is broadly confirmed on regional and global scales using Argo floats and data from the cloud-aerosol lidar with
orthogonal polarization instrument aboard the cloud-aerosol lidar and infrared pathfinder satellite. The artifactual
seasonality in ocean color is prominent in areas of low biomass (i.e., subtropical gyres) and is not easily discerned
in areas of high biomass. While we have eliminated several candidates that could cause the biases in Rrs(λ), there
are still outstanding questions regarding potential contributions from atmospheric corrections. Specifically, we
provide evidence that the aquatic bidirectional reflectance distribution function may in part cause the observed
seasonal bias, but this does not preclude an additional effect of the aerosol estimation. Our investigation high-
lights the contributions that atmospheric correction schemes can make in introducing biases in Rrs (λ), and we
recommend more simulations to discern these influence Rrs (λ) biases. Community efforts are needed to find the
root cause of the seasonal bias because all past, present, and future data are, or will be, affected until a solution is
implemented. ©2021Optical Society of America

https://doi.org/10.1364/AO.426137

1. INTRODUCTION

Spectral remote sensing reflectances (Rrs(λ); sr−1) are the fun-
damental measurements that link the marine environment to
ocean color satellite observations. Since the launch of the coastal
zone color scanner in 1978, satellite observations of Rrs(λ) have
been used to derive biogeochemical variables (e.g., chlorophyll
([chl], mg m−3), spectral particulate backscattering (bbp(λ),
m−1), spectral particulate absorption (ap(λ)m−1), spectral
phytoplankton absorption (aph(λ), m−1), and spectral dissolved
organic matter absorption [adg(λ)m−1)]. These products have
subsequently been used to quantify global net primary pro-
duction [1,2], global carbon export and associated pathways
for sinking (e.g., [3]), particulate organic carbon stocks [4,5],
suspended particle sizes [6,7], metrics of phytoplankton com-
munity composition [8–12], harmful algal blooms [13–15],
phytoplankton carbon and physiology [16,17], nitrogen fixa-
tion [18], river plumes and suspended sediment concentrations
[19–21], dissolved organic matter concentrations [22,23],

metrics of general ecological dynamics [24], and references
therein, and metrics associated with climate change [25–27].

Accurate, low-uncertainty, and unbiased satellite Rrs(λ)

observations are critical for advancing our understanding of
the marine carbon cycle and improving the predictive power of
ecological and climate models. New technologies have allowed
evaluation of ocean color Rrs-derived products on global scales,
particularly Argo and satellite lidar measurements [28–31].
Recently we compared bbp(λ)derived from moderate resolution
imaging spectrometer onboard Aqua (MODIS-Aqua) Rrs (λ)
with both bbp(532) from the cloud-aerosol lidar with orthogo-
nal polarization (CALIOP) instrument aboard the coud-aerosol
lidar and infrared pathfinder (CALIPSO) satellite and bbp(531)
measured on Argo floats. We found that the two satellite sensors
retrieved bbp with relative errors < 30% and that CALIOP
data were more consistent with float estimates of bbp(531) than
MODIS -Aqua. The ratio of MODIS-Aqua-to-CALIOP bbp

revealed global differences that in some regions exceeded 50%
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[29], motivating the current examination of the basis for these
differences.

We approached our analysis agnostically, assuming that either
or both MODIS-Aqua or CALIOP could be spatiotemporally
biased. On one hand, CALIOP bbp is sensitive to the scattering
phase function, which can vary both seasonally and spatially
depending on in-water particle characteristics. On the other
hand, MODIS-Aqua bbp is retrieved from Rrs(λ) based on
assumptions regarding absorption and scattering contribu-
tions of in-water constituents. In addition, MODIS-Aqua
Rrs(λ) retrievals involve an atmospheric correction, requir-
ing inferences on atmospheric aerosol contributions to total
observed signal [32]. Spatiotemporal differences in bbp between
satellite sensors may also arise from viewing angle differences
[33], noting here that CALIOP is a nadir viewing sensor, while
MODIS-Aqua operates at viewing angles±49.5 deg relative to
nadir.

Given the above considerations, we used Rrs (λ) data from
the Marine Optical BuoY (MOBY) site as the central basis for
evaluating MODIS-Aqua and CALIOP bbp differences. MOBY
is a long-duration moored radiometer system located off the
coast of Lanai, Hawaii, and its time-series data are considered
the “gold standard” for calibration and validation of satellite
ocean retrievals [34]. We find that the seasonal cycle in CALIOP
bbp is consistent with MOBY data, whereas a seasonal bias
is evident in ocean color-based bbp. This ocean color bias is
found across sensors [MODIS-Aqua, sea-viewing wide field of
view sensor (SeaWiFS), visible infrared imagining radiometer
suite (VIIRS)], and we provide preliminary evidence that it
arises from the applied bidirectional reflectance distribution
function (BRDF) and other residual effects of the ocean color
atmospheric correction. At the time of this writing, no solution
has been established to correct the seasonal mismatch between
ocean color data and MOBY. We call for additional community
assistance with this issue, as its resolution is fundamental to our
understanding of aquatic ecology and for ensuring success of
future satellite missions, such as plankton, aerosol, cloud, ocean
ecosystem (PACE) [35].

2. METHODS

This section describes our evaluation of MODIS-Aqua, VIIRS,
SeaWiFS, and CALIOP data at the MOBY site. We also describe
global CALIOP bbp (532) and regional Argo bbp (700) data used
to globally extend our primary findings at the MOBY site.

A. Satellite Ocean Color and MOBY Rrs

We retrieved MODIS-Aqua, SeaWiFS, and VIIRS Level-2
satellite Rrs(λ) paired with Rrs(λ) measured at the MOBY site
using the NASA Ocean Biology Processing Group (OBPG)
validation tool [36], which provides paired MOBY measure-
ments and unflagged, same-day satellite observations following
the [37,38] criteria (specifically, at least half of the satellite
pixels in a 5× 5 box around the in situ observation must be
unflagged and the paired observations must be within 3 h of
each other). We calculated (from match-up pairs) monthly
averages of MOBY and MODIS-Aqua Rrs(λ) at 412, 443,
488, 547, and 667 nm (n= 523, with < 5 0 observations in

the March–October averages). We calculated MOBY and
MODIS-Aqua chlorophyll concentration ([chl], mg m−3)
using the standard band-ratio algorithm (“OC3m”) [39]. We
also ran the gneralized inherent optical properties algorithm
in default configuration (GIOP-DC)) [40] on MOBY and
MODIS-Aqua Rrs (λ) data to produce bbp (λ), phytoplankton
absorption (aph (λ)), and absorption by colored material and
nonalgal particles (adg (λ)). Monthly VIIRS Rrs (λ) averages
were calculated at 410, 443,486, 551, and 671 nm (n = 232,
with< 10 observations in April, July, and September). SeaWiFS
(λ) monthly Rrs averages were calculated at 412, 443,490, 510,
555, and 670 nm (n = 769, with < 50 observations for May,
June, and July). Standard errors for all Rrs (λ) observations were
calculated from the standard deviation and number of monthly
observations.

Using exact matchups between MOBY and satellite sen-
sors limits the amount of data used in evaluating ocean color.
Therefore, we also downloaded all available MODIS-Aqua and
MOBY data at the MOBY site (from the OBPG time series tool
[41]) to confirm that the seasonal mismatches exist when all
data are used to quantify the seasonal cycles of MODIS-Aqua
and MOBY Rrs(λ) (Supplement 1 Fig. 4). The time series tool
provides ocean color data at a larger spatial range than the 5× 5
pixel box used in the validation tool (Supplement 1).

B. CALIOP at MOBY

CALIOP is a light detection and ranging (lidar) instrument
flying in the A-train constellation with MODIS-Aqua and
intended for cloud and aerosol retrievals. Nevertheless, repeated
global sampling of subsurface ocean bbp(532) has been achieved
with CALIOP using its polarization channels (see details in
[42]), providing an independent assessment of bbp for com-
parison with MODIS-Aqua (see Supplement 1 of [29]). We
acquired daily CALIOP bbp(532) data from 2006 to 2017 from
the Oregon State University Ocean Productivity website [43]
and used daytime data under both cloudy and clear conditions.
A scattering phase function (at an angle of π ) of 0.32 was used
to calculate CALIOP bbp(532), following [29,44,45]. All
CALIOP daily data (with a 90 m footprint) were binned into
monthly 1-deg grids for each year of data. These monthly values
were then averaged to form monthly climatologies at the MOBY
site (note that MODIS-Aqua data are restricted to the same time
period when compared to CALIOP observations).

C. Ancillary Data: Regional and Global bbp Products

Few ocean color validation sites like MOBY exist worldwide.
We therefore used Argo and CALIOP data to more broadly
examine the ocean color Rrs (λ) biases established at the MOBY
site. Argo floats provide independent in situ measurements
of bbp(700) worldwide that are useful for comparison with
satellite data. Vertical profiles of bbp(700) were downloaded
from the Argo Data Assembly Centre and processed as in [28].
The vertical profiles were despiked with a 3-pt moving median
and the median bbp(700) value calculated for the mixed layer
(defined as the depth were density exceeded the 10 m value by
0.03 kg−3). We extrapolated Argo bbp(700) to bbp(531) for
comparison with MODIS-Aqua (and CALIOP’s bbp(532))
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using the backscattering slope (γ , unitless) derived within
GIOP-DC from colocated MODIS-Aqua Rrs(λ) (see Eq. (2)
in Supplement 1). Previous work compared point-by-point
matchups between Argo, MODIS-Aqua, and CALIOP and
found that CALIOP outperformed MODIS-Aqua with respect
to bbp(531) retrievals (where median percent errors were 25%
for MODIS-Aqua and 16% for CALIOP, relative to an uncer-
tainty of<15% for Argo backscattering sensors [29]). Here, we
instead compare seasonal cycles of Argo, MODIS-Aqua, and
CALIOP bbp. Because there are insufficient measurements of
Argo bbp(531) for any given month, we calculated monthly
averages over the entirety of Argo sampling period for specific
regions. For the global comparison of CALIOP bbp (532) and
MODIS-Aqua bbp (531), daily CALIOP and Level-3 MODIS-
Aqua bbp data were binned into 1-deg composites and then
monthly climatologies constructed for the shared time period
of 2006-2017 (see Supplement 1 for additional information on
MODIS-Aqua bbp processing).

D. Multivariate Regression Analysis on MOBY and
MODIS Data

Multivariate regression (MLR) analysis provides insight into the
dependence of the Rrs(λ)matchups on other matchup variables
that are considered in the atmospheric correction. The atmos-
pheric correction process removes radiometric contributions
of atmospheric gases, aerosols, surface glint, and whitecaps
from the observed top-of-atmosphere signal. The correction
also applies a BRDF adjustment to ultimately derive a final
Rrs(λ) [32]. We utilized a probabilistic programming Python
library, PyMC3, for the MLR, allowing us to estimate the pos-
terior distribution of regression coefficients from explanatory
variables given a prior probability [46]. Using the MLR analy-
sis, we modeled MODIS-Aqua Rrs(λ) (Rrsaqua, derived from
satellite data after the atmospheric correction) as a function
of all other variables, including MOBY Rrs(λ) (Rrsmoby), the
BRDF correction factor (fbrdf(λ)), wind speed (Ws ), Sun glint
contribution (LGN), column water vapor (Cwv), column
ozone (O3), pressure (Pr ), relative humidity (Rh), Ångström
coefficient (αa ), aerosol optical depth (τa ), and the solar zenith
(θsol), sensor zenith (θsen), and relative azimuth (ϕ) angles. The
regression model is assumed to follow a Student’s t distribution,
rather than a normal distribution, because Student’s t allows for
additional degrees of freedom to compensate for strong outliers
(i.e., allows for a more robust linear regression). This assump-
tion is, in effect, similar to the outliers filtering procedure used
in the vicarious calibration process at MOBY, as it excludes
points outside the interquantile range [47]. Rrsaqua is modeled as
follows:

Rrsaqua ∼ St (µ, ν), (1)

where µ and ν are the mean and degree of freedom of the
Student’s t distribution, respectively, andµ is modeled as

µ= β0Rrsmoby + β1θsol + β2θsen + β3ϕ + β4Ws + β5LGN

+ β6Cwv+ β7Rh+ β8O3 + β9Pr+ β10αa + β11τa

+ β12 fbrdf + α.
(2)

Slope coefficients of each variable Eq. (2) are denoted as βi

and α is the intercept. The prior distribution of βi and α are
assumed weakly informative, with mean of zero and a standard
deviation of 100. Since the magnitude and dynamic range of
each variable is different, we scaled the data by subtracting the
mean and dividing by the standard deviation of each variable
(thus, all data have a mean of zero and a standard deviation of
one). The intercept bias (α) is thus zero. In this manner, the
magnitude of the slopes become more meaningful, such that
one unit of change of the dependent variable is equivalent to one
unit of change of the independent variables when a specific βi

is 1 (indicating a one-to-one correspondence between the two
variables).

3. RESULTS

Relative to MOBY Rrs(λ), seasonal cycles of ocean color Rrs(λ)

are pronounced, with higher Rrs(λ) in spring and summer and
lower values in fall and winter (Figs. 1 and 2).

A. Seasonal Bias in Ocean Color Rrs(λ) at MOBY

MOBY Rrs(λ) data are primarily used for system-level vicari-
ous calibration of ocean color satellites [48]. Therefore, it is
reasonable to expect that the average seasonal magnitudes
of satellite-derived Rrs(λ) should mimic those from MOBY
(noting that system vicarious calibration adjusts average abso-
lute instrument plus atmospheric correction differences, not
short-term (e.g., seasonal) instrument temporal drift). Monthly
averaged Rrs(λ) at various wavelengths between ocean color
satellite observations and MOBY exhibit discrepancies over the
seasonal cycle (Figs. 1 and 2). At shorter wavelengths (412 and
443 nm), discrepancies between MOBY (red line) and either
MODIS-Aqua [Figs. 1(a)–1(e)], VIIRS [Figs. 1(f )–1(j)], or
SeaWiFS [Figs. 1(k)–1(o), black lines] are minimal [Figs. 1(a)
and 1(b)], and the general seasonal cycle is consistent between
data sets. However, at longer wavelengths (486–671 nm, where
the effect of Raman scattering is important), the seasonal cycle
of ocean color Rrs (λ) is very different from that of MOBY.
MOBY exhibits little to no seasonality for wavelengths exceed-
ing 500 nm. In contrast, monthly averages of ocean color
Rrs(λ) > 500 nm tend to be elevated in summer compared
to other seasons. Overall, MODIS-Aqua and VIIRS tend
to exhibit higher magnitudes of a seasonal bias compared to
SeaWiFS.

Discrepancies in Rrs(λ) seasonal cycles exist among the three
ocean color satellite sensors, perhaps in part reflecting differ-
ent sample sizes per month (i.e., due to sampling bias, varied
viewing and solar geometries at the time of observation, or
both). Correlations across the same wavelengths of different
sensors are generally good (R∼ 0.8), except in the red (where
R∼ 0.4). Additionally, two sample t-tests to determine statis-
tical differences (which explicitly incorporate sample size and
variance for each month) generally show similarity across sensor
comparisons (by wavelength and month), although ∼30% of
instances reveal statistically significant differences that may
reflect inadequate sampling. Future and ongoing work should
incorporate greater uncertainty analyses, as well as simulations,
to determine the degree to which the three sensors differ.
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(a) (f) (k)

(b) (g) (l)

(c) (h) (m)

(d) (i) (n)

(e) (j) (o)

Fig. 1. Monthly averaged Rrs (λ) with standard error bars for paired validation observations between (a)–(e) MODIS-Aqua, black line;
(f )–(j) VIIRS, black line; (k)–(o) SeaWiFS, black line, and MOBY (red line), for each month. Note that wavelengths displayed in a row are not
always similar.

The shape of the ocean color Rrs(λ) seasonal cycle at
MOBY also varies slightly different between satellite sensors
(compare red lines in Fig. 1). When all MOBY data are used
(Supplement 1 Fig. 4), Rrs (λ) exhibits a seasonality with rela-
tively higher values in the summer for the longer wavelengths. In
general, these patterns are preserved in the validation matchups
shown in Fig. 1, but can be obscured by the y axes for each sensor
(e.g., compare the last row, Fig. 1).

Relative differences between MODIS-Aqua [Figs. 2(a)–2(e)],
VIIRS [Figs. 2(f )–2(j)], SeaWiFS [Figs. 2(k)–2(o)], and MOBY
are relatively modest (on the order of 10%) for Rrs(λ) obser-
vations between 412 and 555 nm, but at 667 nm and 671 nm
the differences can reach 50% (noting, however, that the abso-
lute signal at these red wavelengths is much lower than the
blue bands). The biggest discrepancies between satellite ocean
color and MOBY Rrs(λ) are during the summer months for all
wavelengths. These months also have the most sparse and con-
strained geometric sampling due to the exclusion of Sun-glint
contaminated data. When all data are used to compile monthly

averages, rather than restricting data to validation matchups,
relative biases range from 20%-40% (see Supplement 1 Fig. 4).

B. Biases in Rrs (λ)-Derived Products at MOBY

When MOBY and MODIS-Aqua Rrs(λ) are used to derive
bbp(λ), the seasonal cycle observed between the two sensors is
markedly different (Fig. 3). MOBY bbp(531) (black dotted line)
and CALIOP bbp(532) (blue solid line) exhibit weak season-
ality at this location compared to MODIS− Aqua bbp(531)
[red line, Fig. 4(a)]. The MODIS-Aqua bbp(531) :MOBY
bbp(531) and MODIS-Aqua bbp(531) :CALIOP bbp(532)
ratios have the same general shape over the annual cycle, again
suggesting that MOBY and CALIOP retrievals are more similar
to each other than either is to MODIS-Aqua [Fig. 3(b)]. The
seasonal bias between MODIS-Aqua and CALIOP backscat-
tering (black solid line) is∼10% different compared to∼30%
different between MODIS-Aqua and MOBY (black dotted
line) for the peak bbp(531) difference between sensors (which
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Fig. 2. Ratios of ocean color Rrs to MOBY Rrs for (a)–(e) MODIS-Aqua; (f )–(j) VIIRS; and (k)–(o) SeaWiFS. Average monthly values for each
satellite sensor are compared with average MOBY validation data over a shared time period where data are available.

occurs around May to August). These differences are largely
because CALIOP bbp(532) exceeds MOBY bbp(531) (Fig. 3(b),
[29]). Overall, the observed seasonal bias between MODIS-
Aqua and MOBY at this local site is consistent with the seasonal
bias between MODIS-Aqua and CALIOP on global scales.
MODIS-Aqua bbp(531) greatly exceeds MOBY bbp(531) dur-
ing the summer months compared to the winter months in the
northern hemisphere.

In addition to bbp(λ), we also used MOBY and MODIS-
Aqua Rrs(λ) data to calculate phytoplankton absorption
[aph(443), red line in Fig. 3(c)], absorption from dissolved
detrital organic matter plus nonalgal particles [adg(412), blue
line in Fig. 3(c)], and chlorophyll ([chl], green dashed line in
Fig. 3(c)). In contrast to MOBY and MODIS-Aqua bbp(531),
all of the absorbing constituents derived from MODIS-Aqua

Rrs(λ) are lower on average compared to MOBY, although the
differences are smaller than that for bbp(531). Differences in
[chl] for MOBY and MODIS-Aqua can reach 20% from March
to April, while differences for adg(412) and aph(443) remain
below 15% throughout the annual cycle.

C. MLR Analysis Findings

Results from the MLR analysis (Fig. 4) indicate a significant
dependence of Rrsaqua on the solar and sensor zenith angle at
almost all wavelengths, as well as on BRDF slope (β) across
wavelengths. A β close to 0 indicates no correspondence with
Rrsaqua, while a negative β indicates an inverse relationship.
Ideally, the β0, slope between Rrsaqua and Rrsmoby should be
1, while the slope for other independent variables should
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(a)

(b)

(c)

Fig. 3. Comparison of MODIS-Aqua bbp(531) with CALIOP
bbp(532) and MOBY retrievals at the MOBY site. (a) Monthly aver-
aged MODIS-Aqua (red), MOBY (black dashed line), and CALIOP
(blue) bbp(λ); (b) MODIS-Aqua bbp(531) :CALIOP bbp(531) (black
solid line) and MODIS-Aqua bbp(531) :MOBY bbp(531) (black dot-
ted line). Dashed line indicates a ratio of 1. (c) MODIS-Aqua:MOBY
bbp(531), MODIS-Aqua:MOBY aph(443) (red line), MODIS-Aqua:
MOBY adg(412) (blue line), MODIS-Aqua:MOBY chlorophyll
(green dashed line, calculated using the standard band-ratio “OC3m”
algorithm). All averages are calculated within a shared time period of
2006–2017.

be 0 (indicating independence between the variables and
the Rrs(λ) matchups). A deviation in β from 0 indicates a
residual bias in the matchups due to improper correction to

these parameters on their relationship with Rrsaqua. The slope
coefficient for Rrsmoby approaches 0 at wavelengths 531 nm and
greater.

At longer wavelengths, slopes for the optical depth and the
Ångström coefficient deviate from 0, as well as the slope for
the glint contribution (particularly at 667 and 678 nm). At
wavelengths 412 and 443 nm, other than the zenith angles, the
BRDF correction factor has the largest s, indicating that this
correction has the most colinearity with the Rrs(λ) matchups.
The BRDF slope decreases for longer wavelengths, and the
slope of the Ångström coefficient and the optical depth is more
pronounced. Overall, the BRDF slope showed a consistent
and statistically significant departure from the zero line at all
wavelengths. However, the aerosol correction also plays a role.

D. Confirmation of a Bias in Ocean Color Products at
Regional and Global Scales

To learn if a seasonal bias exists in ocean color products at larger
scales beyond MOBY (and also to test if the general results at
MOBY are site-specific), we compared MODIS-Aqua and
CALIOP data with in situ bbp from Argo floats in the South
Pacific, Indian Ocean, and South Atlantic (Supplement 1
Figs. 1–3). These comparisons reveal that the seasonal cycle of
MODIS-Aqua is unlike the seasonal cycle of either CALIOP or
Argo. In particular, MODIS-Aqua bbp is symmetric across the
annual cycle and has more pronounced seasonality compared
to CALIOP or Argo. Thus, the pattern in ocean color season-
ality observed at the MOBY site appears to also broadly exist in
MODIS-Aqua bbp(531) data at global scales (Supplement 1
Fig. 5, Visualization 1, Visualization 2, Visualization 3,
Visualization 4, Visualization 5, Visualization 6, Visualization
7, Visualization 8, Visualization 9, Visualization 10).

On a region-to-region basis, seasonal patterns in MODIS-
Aqua data show both similarities and differences with the
CALIOP and Argo data (Fig. 5). For example, in the North
Atlantic and Arctic, the seasonal cycles of MODIS-Aqua,
Argo, and CALIOP agree well. In contrast, the magnitude of

Fig. 4. Forest plot of the MLR slope coefficients for wavelengths 412, 443, 488, 531, 547, 555, 667, and 678 nm. The y axis shows the β coeffi-
cients for each explanatory variable and the x axis shows the scale of these coefficients. The open circle represents the mode of the posterior, while the
error bar represents the 94% high density interval of the distribution.
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Fig. 5. Global comparisons of MODIS-Aqua bbp(531) and CALIOP bbp(532). The ratio of annually averaged MODIS-Aqua to annually
averaged CALIOP bbp is mapped. Both MODIS-Aqua and daytime CALIOP data were binned to 1 deg and averaged over a shared time period of
2006–2017 to form monthly averages. When Argo data are available (with at least 200 independent observations over the annual cycle) monthly
averages of Argo bbp (531) are plotted (black) alongside MODIS-Aqua (red) and CALIOP (blue) bbp.

MODIS-Aqua bbp and its seasonal cycle disagree with both
Argo and CALIOP data in low-biomass regions (e.g., South
Pacific, South Atlantic, Indian Ocean) (Fig. 5) (one exception,
here, is the South Atlantic, where the shape of the seasonal cycle
in MODIS-Aqua bbp is better aligned with Argo data than
CALIOP, but the magnitude of MODIS-Aqua data is ∼30%
higher than either CALIOP or Argo). The Indian Ocean, South
Pacific, and northeast Pacific sites exhibit symmetrical (relative
to the central month of June) seasonal cycles in MODIS-Aqua
bbp. In summary, the Argo and CALIOP data appear to confirm
over a much broader scale the findings reported above for the
MOBY site.

4. DISCUSSION

Here, we present significant seasonal mismatches between
ocean color satellite data products and equivalent retrievals from
other independent sources (MOBY, CALIOP, and Argo). In
many cases, the mismatches in Rrs(λ) observations are roughly
symmetrical over the annual cycle, which is difficult to reconcile
with known seasonal plankton cycles, which tend to be asym-
metric with respect to the seasonal cycle (e.g., [49,50]). Seasonal
symmetry is expected, however, if the source of the issue is linked
to solar geometry (including day length, which is directly pro-
portional to solar zenith angle). Therefore, the observed shape in
Rrs(λ) over the annual cycle strongly implies that the observed

seasonal biases are related not to in-water processes but artifacts
stemming from data processing. Our analysis has eliminated
many potential candidates causing the seasonal biases, but we
have not yet identified the specific issue(s). Nevertheless, we
can still examine the extent to which the bias is problematic for
different regions and times. Here, we reflect on what is learned
from cross-comparing observational platforms to discover the
widespread seasonal bias in satellite ocean color observations.

A. Importance of Additional Assets to Improve
Remote Sensing

Our discovery of the ocean color seasonal bias highlights the
importance of multiple independent satellite and in situ data
sets for performance evaluations (in addition to traditional
coincident satellite-to-in situ match-ups). More specifically,
CALIOP provided the first indications of a bias in ocean color
products [29] and enabled a global extension of findings at the
MOBY site. The high-quality time-series MOBY data were
essential to “ground truth” the initial CALIOP finding and con-
firm that the bias is present in Rrs(λ), not just products derived
from Rrs(λ). We also learn from MOBY that bbp(λ) retrievals
are most strongly affected by the Rrs(λ) biases in comparison to
chlorophyll, phytoplankton absorption, and dissolved organic
matter absorption retrievals. Finally, Argo data were vital for
testing the accuracy of MODIS-Aqua and CALIOP products
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at regional scales. Recognizing that a seasonal bias in ocean
color products has existed but remained undetected for decades
illustrates how the importance of independent data sets for
evaluating remote-sensing products cannot be overstated.

Closure in bbp(λ) has not been reached between passive
remote sensing, in situ sampling, and active remote sensing.
In truth, none of these platforms fully measure bbp(λ), as
the sensors employed observe scattering at different viewing
angles and measure only part of the volume scattering function.
CALIOP data do not exhibit the seasonal bias apparent in ocean
color Rrs(λ), which we speculate is due to the lidar making a
more direct measurement of bbp(λ), being unaffected by Sun
zenith angle, and having less sensitivity to atmospheric con-
ditions (including clouds, e.g., [51] and references therein).
In contrast, ocean color Rrs(λ) is the remaining signal after
removing estimated contributions of surface glint, whitecaps,
and atmospheric molecules and aerosols, and following a BRDF
correction. In addition, deriving bbp(λ) from Rrs(λ) from ocean
color requires spectral assumptions regarding scattering and
absorbing constituents in seawater.

Satellite ocean color and lidar observations both exhibit an
overall bias in bbp for low-biomass areas. Argo bbp(531) obser-
vations in oligotrophic regions (South Pacific, South Atlantic,
Indian ocean gyres) are roughly 30% lower than CALIOP
bbp(532) and up to 50% lower than MODIS-Aqua bbp(531).
These findings are consistent with our work [28], where
we report a good correspondence between Argo, MODIS-
Aqua, and CALIOP for bbp values > 0.001 m−1, but not for
those< 0.001 m−1. The reason for the elevated MODIS-Aqua
and CALIOP retrievals in low-biomass regions is not yet under-
stood, and continued work is needed to resolve this issue. The
reason that the seasonal biases in ocean color are not as pro-
nounced in high-biomass regions is likely because the ocean’s
biological signal is larger (relative to low-biomass regions) and
less influenced by atmospheric corrections. Overall, the biases
in ocean color retrievals yield seasonal patterns in many regions
that are inaccurate and may be problematic, depending on the
scale and intention of studies that use these measurements.

B. What Can We Learn about Rrs (λ) from Diagnosing
the Seasonal Bias?

In this study, we employed a series of diagnostic tests in an
attempt to identify any underlying cause of the seasonal bias
in satellite ocean color bbp(λ). Despite testing ideas thought
to have a large influence on bbp(λ) (such as Raman correction,
assumed spectral shape of absorption and backscattering), we
found that specific assumptions in Rrs(λ) inversions had little
influence on the seasonal bias in bbp(λ). This finding implies
that atmospheric correction schemes have a larger effect on
Rrs-derived products than the current inversion models used to
derive those products.

The larger relative bias in Rrs(λ) for longer wavelengths
appears to impact derived geophysical products that include
longer wavelengths. For example, there is a clear seasonal bias
in bbp(λ) derived from Rrs(λ) at MOBY due to the inclusion
of strongly biased Rrs(531− 667) into GIOP-DC. This clear
bbp(λ) bias is present despite no pronounced seasonal bias for

shorter wavelengths included within the GIOP-DC inversion
scheme.

All sensors in this study have uncertainty associated with
their products, and MOBY is no exception. While the absolute
laboratory calibrations of MOBY strictly adhere to National
Institute of Standards and Technology (NIST)-traceable
standards and processes [52], the final water-leaving signals
require postprocessing and extrapolation from observations
> 1 m depth. Errors in this extrapolation can approach 80% at
longer wavelengths (e.g., see Fig. 7 of [53]). Since both MOBY
and satellite data have relatively larger uncertainties in the
green/red wavelengths, more realistic (wavelength-dependent)
uncertainties should be included in future work [54].

C. Global Implications of Rrs Bias

Although the bulk of our analysis focused on the MODIS-
Aqua sensor, the seasonal bias in satellite Rrs(λ) is present in
SeaWiFS and VIIRS imagery as well. The seasonal bias is larger
in MODIS-Aqua and VIIRS compared to SeaWiFs, which may
be a function of the different viewing angles between the sensors,
as well as differences in local overpass times and solar geometries.
Accurate seasonal measurements of bbp(λ) in particular are
needed to characterize temporal dynamics of phytoplankton
carbon [55] and particulate organic carbon. Phytoplankton
carbon observations from satellites are used in many models,
from net primary production to carbon export. Net primary
production algorithms require growth rates calculated from
phytoplankton physiological states, commonly assessed using
satellite Chl:Carbon ratios [16]. Mechanistic carbon export
models that use food-web interactions rely entirely on the
derivative of phytoplankton carbon over the annual cycle in
order to diagnose grazing rates and assess other loss terms [3,56].
Using seasonally biased data will accordingly impact quantifi-
cation of carbon flux and net primary productivity for lower
biomass areas.

Phytoplankton size is another area where accurate bbp(λ)

observations are especially needed over the seasonal cycle. One
particle size algorithm [6] uses bbp(λ) observations to track
changes in particle size distributions from month to month.
This algorithm has been used widely in ecological and carbon
cycle studies. A recent carbon export study found that including
particle size in ecological models improves the performance of
those models [56], but an incorrect seasonal cycle of particle
size will introduce bias into the modeled results. Introducing
seasonal error into carbon cycle models may create a particularly
significant issue for oligotrophic areas dominated by picophy-
toplankton, which have been getting more attention for their
role in carbon export (see [57,58], and references therein).
Oligotrophic regions may also be growing in areal extent due
to climate change, and they are predicted to continue growing
in future years [59], making them a substantial element of the
global ocean system. If an artificial seasonality in phytoplankton
size is introduced by algorithms built from ocean color bbp(λ),
it will be difficult to predict the ecological fate of oligotrophic
regions.

Our study has insufficiently characterized a seasonal bias
in [chl] because we have only done so at the MOBY site using
remote-sensing derivation, which represents a restricted range in
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chlorophyll concentrations compared to the global distribution.
Even so, we mention that any artificial seasonality in satellite
chlorophyll may inadequately quantify phytoplankton physiol-
ogy, growth rates, and phytoplankton community composition
via empirically derived models for phytoplankton functional
types [8,60,61].

D. Recommendations

Several additional top candidates (not explored here) for the
source of the seasonal bias in Rrs(λ), which are known to depend
on angular geometry, include 1) instrument calibration; 2)
atmospheric correction (other aspects beyond what is included
here); 3) modeling of the water signal; and 4) system vicarious
calibration. The instrument calibration could introduce a bias
into Rrs(λ) due to scan angle dependence, polarization correc-
tions (which are a strong function of scattering angle), and other
nonlinear effects, such as temperature dependencies. We note,
however, that these characterizations can vary from instrument
to instrument and may not offer a systematic reason for the
observed bias across missions. Atmospheric correction estimates
signals arising from molecular and aerosol scattering (as well
as absorption) and it accounts for gaseous absorption (e.g., by
ozone) and ocean surface effects (e.g., glint and whitecaps).
Some of these effects are not well known or determined with
sufficient accuracy, possibly yielding angular-dependent Rrs(λ)

errors. The retrieved signal from the water body, as viewed from
space, needs to be corrected for diffuse atmospheric transmit-
tance and normalized to yield Rrs(λ) in a reference geometry.
This requires proper modeling of bidirectional effects and
interactions between the water body and the atmosphere. The
current treatment might be improved by choosing a different
BRDF (e.g., [62]), taking into account the water-leaving signal
backscattered by the atmosphere, including anisotropy of the
subsurface upwelling light field in the diffuse transmittance
[63], and incorporating Earth sphericity [64,65]. The system
vicarious calibration process aims to reduce the average tempo-
ral systematic bias for in situ and satellite observations at MOBY,
but vicarious calibration does not address seasonal bias issues
due to the instrument or the atmospheric correction [47]. For
visible-band system vicarious calibration to be effective, the
modeled atmospheric contributions need to be accurate and
the near-infrared bands need to be adequately vicariously cali-
brated first [66]. Furthermore, vicarious calibration at MOBY is
vulnerable to seasonal biases in match-up sample sizes because
of Sun glint contamination at its latitude. An additional con-
sideration is the Raman correction scheme applied to Rrs (λ),
because the effect of Raman scattering is greater at longer wave-
lengths and also scales with solar angle. The current Raman
scattering correction schemes do not explicitly take solar angle
into account, so revisiting Raman correction schemes may be
merited.

We note that our multivariate regression analysis found that
slopes of the Ångström coefficient and aerosol optical depth
were more pronounced at mid-visible wavelengths, but less at
shorter wavelengths. Typically, the choice of aerosol model, pre-
sented as the Ångström coefficient, affects shorter wavelengths
more so than longer ones, due to the atmospheric correction
assumptions of extrapolating the aerosol spectral dependence

from the near-infrared wavelengths. However, the slopes repre-
senting the BRDF were more pronounced at 412 and 443 nm
than the aerosols’ effect, suggesting a more complex underlying
process that perhaps combine the effects of the BRDF and the
aerosols correction, or more unknown parameters. The dynamic
range of the ocean and the aerosol signals also play a role, since
the dynamic range of the Rrs(λ) can be orders of magnitude
different from the blue end of the spectrum to the red end.
Future work could explore different aerosol models and consider
integrating CALIOP-derived aerosol optical depth informa-
tion along with MODIS-Aqua data (as in [67], which showed
substantial differences between CALIOP and MODIS-Aqua
optical depth).

Until a solution to the seasonal bias is identified and imple-
mented, we recommend additional consideration of CALIOP
bbp(λ) data for global scale analyses when possible and pru-
dent. Although the focus of this paper has been on the seasonal
bias in ocean color Rrs(λ), we have previously found annually
averaged regional differences in estimated phytoplankton car-
bon from MODIS-Aqua compared to CALIOP of up to 50%
[29], especially in low-biomass regions affected by the seasonal
bias. For this reason, studies should acknowledge the seasonal
bias when interpreting spatiotemporal patterns in ocean color
data. Despite CALIOP’s ∼100 m footprint and the fact that it
does not provide the comparable spatial coverage as SeaWiFS,
MODIS-Aqua, and VIIRS, data from CALIOP can be averaged
into the 1-deg monthly bins that are a common spatiotemporal
resolution of models.

5. CONCLUSION

In this study, we provide evidence for global seasonal biases
in satellite ocean color observations. Our findings can be
summarized by the following points:

• The entire record of satellite ocean color over the last few
decades is likely seasonally biased in low-biomass regions.

• Particulate backscattering from inversion models is most
affected by a seasonal bias in Rrs(λ), while phytoplankton and
dissolved detrital absorption are less affected.

• The seasonal bias in Rrs(λ) is most pronounced at longer
wavelengths (i.e., > 531 nm) in a relative sense, noting that
these signals are smaller in comparison with shorter wavelengths
in open ocean water.

• Independent global observations are critical to validate
remote-sensing products.

• Community efforts should help identify the root source
of the problem, as all past, present, and future data (from the
PACE mission, for example) will be affected until a solution can
be implemented.
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