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Abstract: Passive ocean observing sensors are unable to detect subsurface structure in ocean 
properties, resulting in errors in water column integrated phytoplankton biomass and net 
primary production (NPP) estimates. Active lidar (light detection and ranging) sensors make 
quantitative measurements of depth-resolved backscatter (bbp) and diffuse light attenuation 
(Kd) coefficients in the ocean and can provide critical measurements for biogeochemical 
models. Sub-surface phytoplankton biomass, light, chlorophyll, and NPP fields were 
characterized using both in situ measurements and coincident airborne high spectral 
resolution lidar (HSRL-1) measurements collected as part of the SABOR (Ship-Aircraft Bio-
Optical Research) field campaign. We found that depth-resolved data are critical for 
calculating phytoplankton stocks and NPP, with improvements in NPP estimates up to 54%. 
We observed strong correlations between coincident HSRL-1 and in situ IOP measurements 
of both bbp (r = 0.94) and Kd (r = 0.90). 
© 2017 Optical Society of America 
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1. Introduction

It has been widely recognized since the Coastal Zone Color Scanner (CZCS) era that the 
inability of passive ocean color measurements to resolve phytoplankton vertical structure can 
be a primary source of error in global phytoplankton biomass and net primary production 
(NPP) estimates [1,2]. Stramska and Stramski (2005) [3] used HydroLight to model the 
effects of non-uniform chlorophyll distributions on remote-sensing reflectance (RRS) and 
found sub-surface chlorophyll maxima could result in relative errors in chlorophyll 
(calculated as an RRS ratio) of up to 70% under oligotrophic conditions. Platt and 
Sathyendranath (1988) [4] evaluated the impact of vertical structure in chlorophyll on 
integrated NPP measurements and found that errors in NPP were considerably larger when 
the chlorophyll feature was located in the upper water column. Here we use data collected 
during the 2104 NASA SABOR (Ship-Aircraft Bio-Optical Research) campaign to evaluate 
the utility of lidar (light detection and ranging) measurements for characterizing vertical 
variability in plankton and optical properties. Active lidar sensors make quantitative 
measurements of depth-resolved backscatter (bbp) and diffuse light attenuation (Kd) 
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coefficients in the ocean [5–9] and can provide critical measurements for biogeochemical 
models. 

The SABOR campaign was conducted in the western North Atlantic with the goal of 
advancing key technologies for plankton characterizations from space. We evaluated sub-
surface phytoplankton biomass, light, and chlorophyll fields using both high spectral 
resolution lidar (HSRL-1) and coincident in-water IOP (inherent optical property) 
measurements. These data were then employed as inputs to the carbon-based production 
model (CbPM) [10,11] to calculate vertically resolved NPP. SABOR sampling stations 
covered continental shelf, slope, and offshore waters and provided a large dynamic range in 
bio-optical states. Previous work has found that NPP in this region is seasonally variable and 
often exhibits strong water column stratification and subsurface chlorophyll and production 
features that persist through the summer season [12,13]. 

We show that depth-resolved measurements of ocean properties are critical for calculating 
biomass and NPP in the upper ocean and enable up to 54% more accurate estimates of NPP 
compared to calculations made without information on the vertical structure. We also show 
that phytoplankton biomass features of a given magnitude have a significantly larger impact 
on NPP estimates if they are located in the top two optical depths of the water column 
compared to deeper features. This critical upper layer can be effectively characterized by 
either an airborne or satellite ocean-optimized lidar. 

2. Methods

The SABOR campaign was conducted onboard the R/V Endeavor in the northwest Atlantic 
from 18 July to 6 August 2014. Profiles of optical properties, conductivity, temperature, and 
depth (CTD) were collected at 23 stations. Data collected at these stations were used to 
quantify the effects of vertical structure in phytoplankton biomass, light attenuation, and 
chlorophyll on NPP calculations. Casts where the photic zone depth was greater than the 
depth of the water column (5 stations) were excluded from the analyses. Concurrent 
measurements with an ocean-optimized airborne lidar were compared to in-water 
measurements and used to evaluate how future satellite lidar data may complement passive 
ocean color observations to reduce uncertainties in retrieved ocean ecosystem properties. 

Ship-based (hereafter referred to as ‘in situ’) absorption and attenuation data at 9 
wavelengths (412, 440, 488, 510, 532, 555, 650, 676, and 715 nm) were collected using a 
WET Labs (Philomath, OR) ac-9. The ac-9 was calibrated with Milli-Q ultrapure water 
following the protocols in Twardowski et al. (1999) [14]. Absorption was corrected for 
scattering effects using the proportional method of Zaneveld et al. (1994) [15]. Data were 
corrected for temperature and salinity effects using the coefficients of Twardowski et al. 
(1999) [14] and in situ CTD data (SeaBird SBE49 CTD; Bellevue, WA). Chlorophyll was 
calculated from phytoplankton absorption using the method of Sullivan et al. (2005) [16]. 
Backscatter was measured using a WET Labs ECO-BB9 (412, 440, 488, 510, 532, 595, 660, 
676, and 715 nm). Backscatter data were linearly interpolated for wavelengths not matching 
the ac-9 (555 and 650 nm). Volume scattering function data were converted to backscattering 
coefficients following the protocol in Sullivan et al. (2013) [17]. Light attenuation 
coefficients at 532 nm were calculated as a function of total absorption at 532 nm, 
backscattering at 532 nm, and sun angle according to Gordon et al. (1988) [18]. Solar zenith 
angle was assumed to be 0° for comparison to HSRL-1 measurements. All data were 
averaged into 1 m depth bins and smoothed using a five-point moving average. 
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Table 1. Distances between the HSRL-1 nearest profile and optics cast 

STATION ∆SPACE (degrees) ∆SPACE (km)* ∆TIME (hours) ∆ABS. DISTANCE** 
1 0.001 0.093 0.139 0.510 

2 0.275 22.825 14.621 57.371

3 0.079 7.058 0.041 7.059 

4 0.009 1.022 7.195 25.923

5 0.002 0.173 0.463 1.676 

6 0.001 0.117 2.998 10.792

7 0.003 0.244 2.926 10.535 

8 0.004 0.367 1.522 5.490

9 0.002 0.167 1.356 4.884 

10 7.840E-4 0.083 9.466 34.076

11 0.615 55.071 4.186 57.095 

12 0.009 9.026 6.636 25.538

13 0.096 8.492 19.166 69.520 

14 0.005 0.370 8.482 30.536

15 0.025 2.044 10.207 36.803 

16 0.007 0.580 10.982 39.541

17 0.008 0.787 11.950 43.026 

18 1.337 133.207 5.508 134.675 

*The spatial differences in degrees were converted to kilometers at latitude using the Haversine function. 

**Absolute distance calculated as a function of spatial and temporal differences assuming a current speed of 1 m 
s−1. 

HSRL-1 measurements of ocean bbp and Kd at 532 nm were collected onboard the NASA 
LaRC King Air aircraft at approximately 9 km altitude [8]. In situ optics casts were matched 
to HSRL-1 measurements within one day and half a degree. On average, HSRL-1 and in situ 
comparisons were made between measurements collected 3.3 km and 6.8 hours apart (Table 
1). The median of the ten nearest lidar profiles (~4 km radius) was used for comparisons with 
in situ data. Phytoplankton carbon (Cphyto; mg m−3) was calculated from bbp according to Graff 
et al. (2015) [19] for both in situ and HSRL-1 measurements. HSRL-1 Cphyto data were 
converted to chlorophyll concentrations using depth-dependent changes in chlorophyll:Cphyto 
resulting from nutrient-replete photoacclimation [11]: 

3lim 0.022 (0.045 0.022) ,gIPhotoacc ation e−= + − (1a)

lim * ,phytoChlorophyll photoacc ation C= (1b)

where Ig = growth irradiance (see below). Data were smoothed vertically using a five-point 
moving average. The HSRL-1 data were matched by depth to the in situ measurements using 
linear interpolation, reducing the vertical resolution from 0.94 to 1 m. The HSRL-1 measures 
ocean properties to approximately 2.5-3 optical depths below the surface. The measured bbp 
and Kd values below this depth were fixed to the value measured at the maximum penetration 
depth. 

NPP (mg m−3 d−1) was calculated using the CbPM where inputs include bbp (m−1), Kd 
(PAR; m−1), PAR (Ein m−2 d−1), mixed layer depth (MLD), euphotic zone depth (Zeu), day 
length (dl), nutricline depth, and Ig (Ein m−2). The light attenuation coefficient for PAR was 
calculated from Kd(532) following Austin and Petzold (1990) [20] and Morel et al. (2007) 
[21]. PAR was measured using an Eppley PSP (Eppley Laboratories, Newport, RI) mounted 
to the top of the crane cab eight meters above the waterline. MLD was calculated using a 
fixed density threshold of 0.03 kg m−3 following de Boyer Montegut et al. (2004) [22]. The 
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CbPM was used to model NPP because calculations are vertically resolved and thus provide 
depth-dependent values for comparison to calculations with vertically-resolved 
measurements. Growth irradiance (Ig) is the light level to which phytoplankton are 
acclimated. Growth irradiance in the mixed layer was calculated as [10,11]: 

*
2( *0.975 / ) ,

d
MLD

K

gI PAR dl e
−

= (2)

where Kd is the median light attenuation coefficient for PAR in the mixed layer and 0.975 
accounts for Fresnel reflection. Growth irradiance at depths below the mixed layer was taken 
as PAR at that depth. For HSRL-based calculations of chlorophyll, Kd was proportionally 
adjusted to match the in situ data before solving for Ig. Euphotic zone depth was defined as 
the 0.415 mol quanta m−2 d−1 isolume depth [23]. Nutrients were not measured as part of 
SABOR and, thus, nutricline depths employed in the CbPM were taken from the World 
Ocean Atlas [24]. Stratification indices were calculated by taking the difference between 
densities at 10 m and 40 m. If the maximum depth was less than 40 m, the density at the 
maximum depth was used to calculate the stratification index. 

A single surface-weighted value was calculated from the in situ profiles of Kd and Cphyto 
following Zaneveld et al. (2005) [25]. These values were then extended through the water 
column to create the unstructured condition used to quantify the effect of uncharacterized 
vertical structure. Surface measurements of Cphyto, the underwater light field, and chlorophyll 
were used to calculate NPP using the traditional CbPM and compared to NPP calculated with 
vertically-resolved measurements. Percent relative error (δrel) was used as a measure of 
vertical structure and calculated as: 

(%) 100* ,rel
rel

y

∂
∂ = (3a)

1
( )

,

n

i ii
rel

y y

n
=

−
∂ =  (3b)

where iy  and jy are the measured ocean properties from, respectively, a uniform and 

vertically-resolved water column at depth i, and y is equal to the mean of the vertically-

resolved measurements. This metric gives no indication of the residual magnitudes, so the 
percent mean absolute error (δ) was also calculated: 

(%) 100* ,
y

∂∂ = (4a)

1
| |

.

n

i ii
y y

n
=

−
∂ =  (4b)

These metrics were also used to compare the HSRL-1 to in situ measurements where iy  and 

iy are the in situ and HSRL-1 measurements of ocean properties, respectively, and y  is the 

mean of the in situ values. Pearson correlation coefficients were used to compare HSRL-1 
and in situ measurements and additionally to evaluate depth-dependent differences between 
measurements. Finally, percent root mean square error (%RMSE) was calculated as: 
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(%) 100* ,
RMSE

RMSE
y

= (5a)

2

1
( )

.

n

i ii
y y

RMSE
n

=
−

= 
(5b)

3. Results

3.1 In situ data 

Phytoplankton and optical properties exhibited significant vertical structure at each SABOR 
station. Comparison of euphotic zone-integrated Cphyto values (ΣCphyto) calculated using depth-
resolved in situ data and values based solely on surface properties within the passive ocean 

color detection layer produced δrel values ranging from −45.6% to −6.2% ( δ rel = −19.9%) 
(Fig. 1(a)). The ‘ocean color type’ values thus consistently underestimated ΣCphyto at all 
stations. Furthermore, previous studies in the region have shown that sub-surface chlorophyll 
structure is observed under stratified conditions [13]. In a similar manner, we found that the 
largest relative errors were correlated with the stratification index (r = 0.72). Comparison of 
depth-resolved and surface-only based Kd(532) values showed a similar degree of 

discrepancy, with δrel values ranging from −36.3% to −2.7% ( δ rel = −20.2%) (Fig. 1(b)). 
Largest relative errors in depth-integrated Kd (ΣKd) were correlated, though not as strongly, 
with the stratification index (r = 0.52). 

Fig. 1. SABOR stations plotted as a function of percent relative error in (a) Cphyto and (b) 
Kd(532), where percent relative error is a measure of vertical structure. Isobaths are plotted at 
1000 m intervals. 

Knowledge of the vertical variability in Cphyto and Kd is critical to obtaining accurate 
column and vertically-resolved estimates of NPP. We tested the significance of this structure 
by comparing vertically-resolved calculations of NPP to values where uniform properties 
were assumed from surface-weighted properties, as would be applied to passive ocean color 
data. The vertically-resolved in situ Cphyto and Kd data enabled much more accurate estimates 
of NPP compared to calculations made without information on the vertical structure (δrel = 

−43.2 – 54.0%; δ rel = −8.4% and δ = 11.7 – 54.0%; δ  = 33.4%) (Fig. 2). Larger absolute
errors, or differences between in situ measurements and an assumed constant profile, were
observed deeper in the water column, leading to larger absolute differences in sub-surface
NPP. To understand the relative impact of Cphyto on NPP calculations as a function of depth,
errors in NPP were normalized to Cphyto errors and binned by optical depth. Normalized NPP
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errors decreased exponentially from the first to third optical depths. Thus, biomass features 
located near the surface had a significantly larger impact on NPP estimates than errors located 
deeper in the water column. 

HSRL-1 retrieves optical properties that are limited to the first 2.5-3 optical depths. 
Therefore, in situ values of bbp and Kd from three optical depths to the bottom of the photic 
zone were held constant to test how much error is introduced to integrated biomass and light 
attenuation calculations when this modification is applied. Mean absolute errors were only 
4.4% and 3.1% for Cphyto and Kd, respectively, indicating that applying this extrapolation to 
HSRL-1 data at depth has only a small effect on integrated biomass and light calculations in 
the photic zone. 

Fig. 2. NPP (mg C m−3 d−1) profiles from the carbon-based production model (CbPM) at every 
station where the maximum depth is greater than the euphotic depth. The black lines are the in 
situ optics-based estimates. The profiles which use surface-weighted values in the traditional 
CbPM are shown in blue. Panels (a) and (h) are the stations with replicate casts (∆t < 1 day, 
same station) with the error bars representing one standard deviation. 

3.2 HSRL-1 measurements of ocean properties 

A strong correlation (r = 0.94) was observed between in situ and HSRL-1 measurements of 
bbp (Fig. 3(a)). Similarly, in situ and HSRL-1 values of Kd also showed high correlation (r = 
0.90) (Fig. 3(b)). The HSRL-1 measurements of bbp and Kd were high compared to in situ 
data, with δrel values of −9.26% and −12.92% for bbp and Kd, respectively. Measurement 
differences were not correlated with depth for bbp or Kd (r = 0.18 and −0.13). 
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Fig. 3. HSRL-1 and in situ measurements of (a) bbp (m
−1) and (b) Kd (m

−1) with marker color 
indicating optical depth. The dotted red lines show the 1:1 relationship. 

Spatial and temporal variability in geophysical properties is one factor contributing to 
differences between in situ and HSRL-1 retrievals and this issue may be particularly 
important in the highly variable region studied during SABOR. HSRL-1 and in situ profiles 
were often collected more than 10 km away. Given the spatial scale of variability in coastal 
waters (~200 m) observed by Moses et al. (2016) [26], we would expect differences between 
the two measurements (Figs. 4 and 5). When we applied more stringent matchup criteria 
(<0.01° and <3 hours) [27], only 7 profiles were available for comparison. Surprisingly, the 
correlation coefficients for bbp decreased slightly to 0.92 and increased to 0.92 for Kd. 

Fig. 4. HSRL-1 and in situ measurements of bbp (m−1). The black profiles are the in situ 
measurements where panels (a) and (h) show the stations with replicate casts (∆t < 1 day, same 
station) with the error bars representing one standard deviation. The red profiles are the HSRL-
1 measurements (median of ten nearest profiles to in situ cast) with the error bars representing 
one standard deviation within profiles. The error bars are a measure of the spatial variability 
around each station. The dotted lines show the first and second optical depths. 
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Fig. 5. HSRL-1 and in situ measurements of Kd (m−1). The black profiles are the in situ 
measurements where panels (a) and (h) show the stations with replicate casts (∆t < 1 day, same 
station) with the error bars representing one standard deviation. The red profiles are the HSRL-
1 measurements (median of ten nearest profiles to in situ cast) with the error bars representing 
one standard deviation within profiles. The error bars are a measure of the spatial variability 
around each station. The dotted lines show the first and second optical depths. 

Fig. 6. HSRL-1 and in situ measurements of (a) chlorophyll a (Chl; mg m−3) and (b) net 
primary production (NPP; mg m−3 d−1). The inset in panel (b) shows the full range of data with 
x and y-axes limits set to 200 mg m−3d−1. The red lines show the 1:1 relationship. 

The carbon-based production model (CbPM) employs information on chlorophyll 
concentration to characterize physiological variability within plankton communities. The 
HSRL-1 currently does not retrieve chlorophyll directly so we made a first order calculation 
of chlorophyll from HSRL-1 bbp data using the chlorophyll:Cphyto relationship of Westberrry 
et al. (2008) [11]. Vertical profiles of chlorophyll calculated in this manner (Eqs. (1a) and 
(1b) from the HSRL-1 data exhibited a significant correlation with in situ optically-based 
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chlorophyll values (r = 0.84) (Fig. 6(a)). Given the temporal variability in vertical plankton 
properties discussed above and the implications this has on profiles of NPP, we observed an 
exceptional correlation between HSRL-1 and in situ optics-based NPP values (r = 0.81) (Fig. 
6(b)). Stations 11 and 18 were not included in this analysis because there were no spatial 
matchups fitting distance criteria. 

4. Discussion

Passive ocean observing sensors do not measure subsurface structure in ocean properties, 
resulting in errors in water column integrated phytoplankton biomass, light attenuation, and 
NPP estimates. In situ data show relative errors of up to 45.6% and 36.3% in phytoplankton 
biomass and light attenuation, respectively, when compared to no vertical structure. Measured 
ocean properties were underestimated at every station relative to in situ data and NPP errors 
up to 54% were observed when the vertically-weighted surface data were used. Furthermore, 
the vertical structure observed during SABOR does not capture the full range of variability 
globally, so the potential errors in products derived from ocean color are likely to be even 
larger than measured during this field campaign. Our findings, therefore, indicate that the 
ability to resolve upper ocean vertical structure in phytoplankton stocks and the underwater 
light field significantly improves estimates of NPP over ‘ocean color type’ values. 

The largest proportional errors in integrated NPP were associated with biomass features 
above two optical depths. These results are consistent with the conclusions of Churnside 
(2015) [1] who found that using passive remote sensing methods introduced significant errors 
to NPP estimates when subsurface phytoplankton layers were present and this error was 
largest when the chlorophyll layer was located in the upper water column. The penetration 
depth expected for an ocean-optimized satellite lidar is within this upper zone which suggests 
that a satellite ocean-optimized lidar would significantly improve global estimates of 
integrated phytoplankton biomass and NPP. 

Matchups between in situ and HSRL-1 measurements were good with correlation 
coefficients for bbp and Kd of 0.94 and 0.90, respectively, despite the high spatial and temporal 
variability that characterizes the SABOR region. This is quite remarkable given that point 
measurements from in situ profiles were compared to measurements averaged up to 70 km 
away (see Table 1). The different spatial and temporal resolutions between measurements 
likely contributed to the observed discrepancies in matchups. 

Although SABOR provided several coincident matchups between HSRL-1 and in situ 
optics, the data are still limited. An important avenue for future studies will be to expand 
matchup analyses with data from a broader range of environmental conditions, such as data 
collected as part of the NAAMES (North Atlantic Aerosols and Marine Ecosystems Study) 
campaign. Such comparative analyses between coincident HSRL-1 and in situ measurements 
will provide important information for evaluating science objectives and design criteria for a 
future ocean-optimized space-based lidar. 

The current study demonstrates the utility of the HSRL technique for depth-resolved 
profiles on bbp and Kd, which, by analogy to the improvements achieved with the depth-
resolved in situ data, would enable much higher accuracy in remote-sensing estimates of 
NPP. Applying the technique at more than one wavelength could provide even greater 
accuracy in NPP. The more advanced NASA HSRL-2 instrument currently implements the 
HSRL technique at both 355 and 532 nm for atmospheric measurements and is in the process 
of being upgraded for higher vertical resolution (~1 m) to optimize it for ocean profiling. 
Measurements of Kd at these two wavelengths will enable separation of different ocean 
constituents contributing to the attenuation of light in the water column, e.g., colored 
dissolved organic matter (CDOM), which is the primary light-absorbing agent in the UV 
spectrum. The light attenuation coefficient is a function of scattering and absorption, and 
since the backscattering coefficient is directly measured by the HSRL, the only unknown 
property is absorption, which includes absorption by CDOM, water, and particles, including 
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phytoplankton. Chlorophyll (i.e., phytoplankton absorption) could thus be calculated directly 
by subtracting from Kd the effects of scattering and CDOM and water absorption. The effects 
of nutrient limitation on chlorophyll:Cphyto are accounted for in this calculation and thus 
represent an improvement over the methods used here. Chlorophyll is a critical variable for 
most NPP algorithms, particularly because of the information it provides on phytoplankton 
physiology when retrieved concurrently with independent estimates of biomass. 
Improvements in the estimation of vertical profiles of chlorophyll are critical for improving 
NPP results. 

We are entering a new era in satellite oceanography where satellite lidar observations can 
address many of the issues that challenge passive ocean color techniques. Already, 
observations from the CALIOP lidar have been used to quantify global stocks of Cphyto and 
total POC and to evaluate complete annual plankton cycles in the polar regions that are 
particularly problematic for passive sensors [28,29]. Despite these successes, the CALIOP 
lidar sensor has limitations for ocean retrievals. First, CALIOP was designed for atmospheric 
applications and its vertical binning resolution (22.5 m) is too coarse for retrieving 
information on vertical structure in the oceans. Second, CALIOP is unable to directly separate 
the backscatter and attenuation coefficients. Behrenfeld et al. (2013) [28] retrieved bbp 
estimates from CALIOP by using independent estimates of Kd from the MODIS passive 
ocean color sensor and an estimate of the reflectance of the laser beam from CloudSat radar 
surface reflection data or wind speed data from the Microwave Scanning Radiometer-EOS. In 
the subsequent polar-focused study of Behrenfeld et al. (2016) [29], an empirical relationship 
between lidar depolarization and Kd was used to retrieve bbp, due to lack of coincident ocean 
color data particularly during the winter months. These parameterizations have been tested 
from data acquired on episodic intervals during which CALIOP was pointed 30° off nadir to 
minimize the laser surface reflection. However, the parameterization scheme for nominal 
near-nadir operations were still dependent on an empirically derived relationship between 
collated MODIS and CALIOP bbp and Kd at lower latitudes [29]. Major advantages over the 
standard elastic backscatter lidar approach of CALIOP is achieved via the HSRL technique. 
HSRL permits independent, direct retrievals of bbp and Kd with minimal assumptions and no 
reliance on ancillary data. This major advantage, along with the high vertical-resolution 
sampling (~1 m), allowed the HSRL-1 instrument to collect vertically resolved retrievals of 
Kd and phytoplankton biomass during SABOR. While an HSRL has not yet been flown in 
space, there is no technological barrier to either implementing the technique or achieving high 
vertical resolution (e.g., 3 m) for ocean profiling. Such an instrument flown in space would 
provide independent and more accurate ocean property retrievals than a standard CALIOP-
like backscatter lidar and an enormous independent data set to evaluate and improve passive 
ocean color retrievals. 
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