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Abstract The Carbon, Absorption, and Fluorescence Euphotic-resolving (CAFE) net primary production
model is an adaptable framework for advancing global ocean productivity assessments by exploiting
state-of-the-art satellite ocean color analyses and addressing key physiological and ecological attributes of
phytoplankton. Here we present the first implementation of the CAFE model that incorporates inherent
optical properties derived from ocean color measurements into a mechanistic and accurate model of
phytoplankton growth rates (μ) and net phytoplankton production (NPP). The CAFE model calculates NPP as
the product of energy absorption (QPAR), and the efficiency (ϕμ) by which absorbed energy is converted into
carbon biomass (CPhyto), while μ is calculated as NPP normalized to CPhyto. The CAFE model performance is
evaluated alongside 21 other NPP models against a spatially robust and globally representative set of direct
NPP measurements. This analysis demonstrates that the CAFE model explains the greatest amount of
variance and has the lowest model bias relative to other NPP models analyzed with this data set. Global
oceanic NPP from the CAFE model (52 PgCm�2 yr�1) and mean division rates (0.34 day�1) are derived from
climatological satellite data (2002–2014). This manuscript discusses and validates individual CAFE model
parameters (e.g., QPAR and ϕμ), provides detailed sensitivity analyses, and compares the CAFE model results
and parameterization to other widely cited models.

1. Introduction

Phytoplankton net primary production (NPP) is an important conduit through which inorganic carbon enters
aquatic biomes. NPP establishes the carrying capacities of marine ecosystems and ultimately regulates the
flux of carbon to the deep ocean (i.e., the “biological pump”). As a vital living link in the carbon cycle, under-
standing how NPP varies through space, time, and across global climatic oscillations (e.g., El Niño–Southern
Oscillation) is a key objective in oceanographic research. Prior to the launch of ocean observing satellites, the
primary source of uncertainty in global NPP assessments was the paucity of direct field measurements. Now,
through ever-improving satellite capabilities and data analytics, uncertainty is driven by how accurately
satellite measurements of ocean color (i.e., radiance) can be scaled to NPP. Converting a radiometric quantity
(radiance) to a physiological rate (NPP) is a daunting challenge, as reflected by current global annual NPP esti-
mates which range from 32 to 79 PgC yr�1 [Carr et al., 2006] (for context, annual anthropogenic emissions are
~7.8 Pg C yr�1 [Intergovernmental Panel on Climate Change (IPCC), 2013]).

The vast majority of NPP models use the concentration of chlorophyll a (Chl a) as the central metric of
phytoplankton biomass. Chl a is empirically related to ocean color, and the accuracy of Chl a-based models
is largely dependent on their ability to predict phytoplankton carbon assimilation efficiencies (i.e., NPP per
unit Chl a) [Behrenfeld and Falkowski, 1997; Milutinovic and Bertino, 2011]. While it has long been recognized
that phytoplankton acclimate to their nutrient and light environment through changes in cellular Chl a
content [Laws and Bannister, 1980; MacIntyre et al., 2002], it has been underappreciated how strongly the
disparate responses of cellular Chl a content are to nutrient and light limitation. The opposing responses
of cellular Chl a content to nutrient and light limitation confound any simple relationship between NPP
and Chl a [Behrenfeld et al., 2016].

Through recent advances in ocean color analyses, a range of phytoplankton physiology and biomass metrics
beyond Chl a can now be retrieved from space. Spectral inversion and bio-optical algorithms now permit
retrievals of phytoplankton absorption coefficients bbp(443 nm) and carbon biomass (CPhyto) from ocean color
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[Lee et al., 2002; Maritorena et al., 2002;Werdell et al., 2013; Behrenfeld et al., 2005;Westberry et al., 2008; Graff
et al., 2015]. The Carbon, Absorption, and Fluorescence Euphotic-resolving (CAFE) model was introduced by
Westberry and Behrenfeld [2013] as an adaptable framework for advancing global ocean productivity
assessments by exploiting state-of-the-art satellite ocean color analyses while addressing key physiological
and ecological attributes of phytoplankton. Here we present the first implementation of the CAFE model that
incorporates ocean color measurements into a mechanistic and accurate model of phytoplankton growth
rates and NPP. Results of this new model are validated against direct NPP measurements, and global NPP
assessments are presented and contrasted against other widely cited models.

1.1. NPP Model Structure

Carbon-basedmodels define NPP as the product of phytoplankton carbon biomass (Cphyto) and a growth rate
(μ [Behrenfeld et al., 2005, equation (1); Westberry et al., 2008]). These two quantities encapsulate dependen-
cies in several aspects of the phytoplankton growth environment. CPhyto is the standing stock of phytoplank-
ton carbon, reflecting the balance between growth and loss processes, such as grazing by zooplankton, while
E(t, z, λ) is largely a function of light and nutrient availability. A wealth of culture measurements made across
light and nutrient regulated growth rates [e.g., MacIntyre et al., 2002] provide robust and well understood
empirical relationships between μ and satellite products (Chl a, CPhyto, photosynthetic active radiation
PAR). Carbon-based NPP models exploit these relationships to derive μ, thus providing a clearer metric of
phytoplankton phenology through the disentanglement of predator-prey interactions and physiology
[Behrenfeld and Boss, 2014].

NPP ¼ CPhyto�μ (1)

Absorption-based models define NPP as the product of energy absorption (QPAR, derived from aϕ and PAR),
and the efficiency (ϕμ) in which absorbed energy is converted into carbon biomass [Kiefer and Mitchell, 1983,
equation (2); Antoine and Morel, 1996; Lee et al., 1996; Smyth et al., 2005]. Absorption-based NPP models have
several advantages over Chl a-based models. First, aϕ is directly related to satellite measurements of radi-
ance, whereas empirical models scale radiance to Chl a. A round robin evaluation of bio-optical algorithms
showed that the accuracy of EK and Chl a retrievals is similar [Brewin et al., 2015]. Furthermore,ϕmax

μ retrievals

are likely more accurate across different water types [Lee et al., 2002], which makes this parameter more
suitable for global scale NPP assessments. Absorption-based models also encapsulate accessory pigment
composition and packaging effects, thus providing a more complete metric of phytoplankton light
harvesting than Chl a alone.

NPP ¼ QPAR�ϕμ (2)

Absorption- and carbon-based modeling approaches can be combined such that μ can be derived mechan-
istically. Substitution of absorption-based NPP (equation (2)) into equation (1) and solving for μ yields:

μ ¼ QPAR=Cphyto�ϕμ (3)

Equations (2) and (3) are compact expressions that link rates of energy absorption with primary production
and growth. These equations, however, must be expanded in order to accurately incorporate an important
aspect of phytoplankton physiology. Satellite-based estimates ofQPAR do not differentiate between absorbed
energy that is dissipated as heat (i.e., nonphotochemical quenching, NPQ), re-emitted as fluorescence, or
passed to the photosynthetic reaction centers to fuel growth. Partitioning of energy between these pathways
is dictated by phytoplankton photoacclimation that imparts a light (E) dependency on ϕμ. Absorption-based
productivity models account for this E-dependency by not estimating ϕ directly, but rather recognizing this
E-dependency is analogous to a photosynthesis-irradiance (PE) curve. Thus, ϕ can be described by two
distinct physiological terms, the light saturation parameter EK and maximum quantum efficiency of growth
ϕmax

μ :

ϕμ ¼ ϕmax
μ � tanh EK=Eð Þ (4)

In this equation, the first term on the right-hand side is the maximum efficiency with which photon energy is
converted to growth and it is typically determined in the laboratory and field at low-light levels [Wozniak
et al., 1992; Marra et al., 2007]. The second term on the right-hand side, tanh(EK/E) quantifies the decrease
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in photosynthetic efficiency as incident light increases. At very low light, the proportion of absorbed energy
used for photosynthetic charge separation and electron transport is maximal such that the latter term on the
right-hand side of equation (4) has a value of ~1, and NPP is a linear function of absorbed light (thus, the
reason ϕmax

μ is determined from low-light measurements). Substitution of equation (4) into equations (2)

and (3) yields

NPP ¼ QPAR�ϕmax
μ � tanh EK=Eð Þ (5)

μ ¼ QPAR=Cphyto�ϕmax
μ � tanh EK=Eð Þ (6)

These revised expressions have a number of advantages. First, advances in ocean color inversion algorithms
have allowed significant improvements in the assessment of QPAR. Second, substantial evidence from the
field and laboratory indicates that ϕmax

μ is relatively constant over a wide range of nutrient and light condi-

tions. Finally, a new description of EK variability has been developed based on fundamental principles of
pigment synthesis regulation [Behrenfeld et al., 2016] that has potential to reduce uncertainties in the final
term of equations (5) and (6).

2. Methods

This section first outlines how satellite products are incorporated into the CAFE model to derive NPP and μ
(equations (5) and (6)). Figure 1 provides a flowchart of this procedure, and Table 1 lists the symbols, defini-
tions, and units for all relevant terminology. A second subsection then describes the implementation of the
CAFEmodel to assess global NPP and briefly outlines three other published NPPmodels for comparative ana-
lyses. Finally, a third subsection describes how the CAFE model skill is evaluated against a spatially robust set
of direct NPP measurements.

2.1. Model Parameterization

A variety of empirical and semianalytical algorithms now permit the derivation of inherent optical properties
(IOPs) from satellite imagery [International Ocean-Colour Coordinating Group, 2006; Brewin et al., 2015]. All IOP
algorithms require a set of assumptions to describe the angular distribution of the in situ light field, and the
relative magnitude and spectral shapes of aϕ(λ), the absorption coefficient of detrital and dissolved matter
(adg(λ)) with a spectral slope denoted Sdg, and the particulate backscattering coefficient (bbp(λ)) with a

Figure 1. Flowchart summarizing the CAFE model’s derivation of NPP and μ. Ovals represent globally gridded data from
MODIS-Aqua, except MLD which is taken from http://www.science.oregonstate.edu/ocean.productivity/.
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spectral slope denoted η. Here we use the Generalized Inherent Optical Properties Default Configuration
algorithm (GIOP-DC) [Werdell et al., 2013]. In a recent evaluation of IOP algorithm skill using data from the
NASA bio-Optical Marine Algorithm Data set [Brewin et al., 2015], the GIOP-DC had the most accurate μmax

retrievals and is currently used by NASA’s Ocean Biology Processing Group to create archive level satellite
IOP products. In the GIOP-DC algorithm themagnitude of aϕ(λ) is unconstrained, but its spectral shape is spe-
cified by two Chl a-dependent coefficients as presented in Bricaud et al. [1998]. These coefficients allow aϕ(λ)
to be estimated at 10 nmwavelength (λ) increments using aϕ(443 nm) and Chl a. In the CAFEmodel all spec-
trally dependent parameters are evaluated at 10 nm increments between 400 and 700 nm.

Absorbed energy (QPAR) is calculated as the product of the daily integrated spectral irradiance just
below the seawater interface (E(0�, λ)) and the fraction of this energy that is absorbed by phytoplankton
(aϕ(λ)/a(λ), equation (7)). E(0�, λ) is the product of the satellite-derived daily integrated photosynthetic
active radiation (PAR) that is spectrally extrapolated using the ASTMG173 reference spectrum

∫
λ¼700 nm

λ¼400 nmPAR:spectrum λð Þ dλ ¼ 1

� �
and a coefficient 0.95 that approximates the fraction of PAR lost as

specular reflectance (equation (8)). Finally, a(λ) is calculated as the sum of aϕ(λ), the absorption coefficient
of pure water (aw(λ)) given in Pope and Fry [1997], and adg(λ) computed from adg(443 nm) and Sdg. In the
GIOP-DC Sdg is constant (0.018m

�1).

QPAR ¼ ∫
λ¼700 nm

λ¼400 nmE 0�; λð Þ�aϕ λð Þ=a λð Þdλ (7)

E 0�; λð Þ ¼ PAR�PAR:spectrum λð Þ � 0:95 (8)

The attenuation coefficient of downwelling irradiance (KD(λ)) is calculated using the semianalytical method of
Lee et al. [2005, equation (9)]. In equation (9)m0,m1,m2, andm3 are empirically derived coefficients, wherem0

Table 1. List of Symbols

Data Source Symbol Definition Units

Satellite Data
aφ(443 nm) Phytoplankton absorption coefficient at 443 nm m�1

adg(443 nm) Absorption due to detrital and gelbstoff material at 443 nm m�1

bbp(443 nm) Particle backscattering coefficient at 443 nm m�1

Chl a Chlorophyll a concentration mgm�3

PAR Daily integrated photosynthetic active radiation mol photonsm�2 d�1

SST Sea surface temperature °C
Sdg Spectral slope for detrital and gelbstoff absorption m�1 nm�1

η Spectral slope for particle backscatter m�1 nm�1

http://www.science.oregonstate.edu/ocean.productivity/
MLD Mixed layer depth m

Literature Coefficients
aw(λ) Absorption due to pure water [Pope and Fry, 1997] m�1

A. p(λ), E. p(λ) Coefficients defining the spectral shape of aφ(λ) [Bricaud et al., 1998] Dimensionless
m0, m1, m2, m3 Coefficients for calculating KD(λ) [Lee et al., 2005] Dimensionless
PARfraction(λ) Spectral distribution of PAR between 400 and 700 nm nm�1

Calculated Data
a Absorption coefficient m�1

aφ(λ) Phytoplankton absorption coefficient m�1

bb(λ) Backscattering coefficient m�1

bbw(λ) Backscattering of pure water m�1

DL Day length day
E(0�, λ) Irradiance below the air-water interface mol photonsm�2 d�1 nm�1

E(t, z, λ) Irradiance at time t, depth z, and wavelength λ mol photonsm�2 d�1 nm�1

EK Light saturation parameter mol photonsm�2 d�1

KD(λ) Diffuse attenuation coefficient m�1

IML Median mixed layer light level mol photonsm�2 hr�1

NPP Net phytoplankton production mol Cm�2 d�1

φμ(E) Light-dependent quantum yield of net carbon fixation mol C (mol photons)�1

φmax
μ Maximum quantum yield of net carbon fixation mol C (mol photons)�1

θZ Solar zenith angle Degrees

Global Biogeochemical Cycles 10.1002/2016GB005521

SILSBE ET AL. NET PHYTOPLANKTON PRODUCTION 1759

http://www.science.oregonstate.edu/ocean.productivity/


varies with solar zenith angle (θZ). bb(λ) is calculated as the sum of bbp(λ) and backscattering by pure water
(bbw(λ)), where bbp(λ) is calculated from bbp(443 nm) and η, and bbw(λ) is derived as a function of sea surface
temperature (SST) and salinity following Zhang and Hu [2009]. For simplicity, we assume a constant salinity
equal to 32.5 practical salinity unit. E(t, z, λ) is derived from KD(λ) and E(0�, λ) following the Beer-Lambert
law (equation (10)). In equation (10), z is divided into 101 vertical increments from the surface to Zeu, and t
is divided into 101 increments where 0 is sunrise and 1 is sunset. Finally, to convert downwelling planar
irradiance to scalar irradiance, E(t, z, λ) is multiplied by a factor Eu. Eu is calculated following equation (11) such
that the depth, time, and wavelength integration of absorbed energy (E(t, z, λ) × aϕ(λ)) equals QPAR calculated
in equation (7). On average, Eu is approximately 1.4 which is consistent with underwater radiative transfer
simulations [Westberry and Siegel, 2003].

KD λð Þ ¼ m0�a λð Þ þm1� 1�m2� exp �m3�a λð Þð Þ
h i

�bb λð Þ (9)

E t; z; λð Þ ¼ 2π�E 0�; λð Þ�sin π�tð Þ�exp �KD λð Þ�zð Þ�Eu (10)

Eμ ¼ QPAR=∫
z¼Zeu

z¼0 ∫
t¼1

t¼0∫
700 nm

400 nmE t; z; λð Þ�aϕ λð Þ dλ dt dz (11)

The next step in the model is calculating the efficiency with which absorbed energy is converted into carbon
biomass. The light dependency of ϕμ is given in equation (12) and is analogous to a traditional photosyn-
thetic irradiance curve [Silsbe and Kromkamp, 2012]. In low light the efficiency in which absorbed energy is

converted to carbon biomass is maximal ϕmax
μ

� �
, then decreases with increasing light as defined by the

hyperbolic tangent of the light saturation parameter EK normalized to irradiance (E(t, z, λ)). EK is estimated
following the photoacclimation model of Behrenfeld et al. [2016]. This EK model is based on fundamental
principles of pigment synthesis regulation and differs depending on whether the mixed layer depth (MLD)
extends beyond (equation (13)) or is shallower than (equation (14)) the euphotic depth (Zeu). In these
equations PAR is daily integrated surface irradiance, DL is day length, IML is themedian light in themixed layer
(equation (15)), and 0.0864 converts μmol photons sm�2 s�1 to mol photonsm�2 d�1. To account for
changes in the spectral quality of light through depth, EK is multiplied by a spectral correction factor following
Markager and Vincent [Markager and Vincent, 2001, equation (16)]. The inclusion of this spectral correction
factor is such that ϕμ does not vary with light per se but rather varies with absorbed energy [Antoine
and Morel, 1996]. Finally, the maximum quantum efficiency of growth ϕmax

μ is modeled as a linear function

of EK between 10 and 150μmol photonsm�2 s�1, with corresponding ϕmax
μ values of 0.030 and

0.018mol Cmol photons�1. This parameterization is consistent with the negative covariance of EK and
ϕmax

μ in field data sets (r=�0.45 [Uitz et al., 2008]).

ϕμ Eð Þ ¼ ϕmax
μ � tanh EK zð Þ=E t; z; λð Þð Þ (12)

Ek MLD > Zeuð Þ ¼ 0:0864� 19� exp 0:038 � PAR=DL0:45ð Þ=KD PARð Þ
� �

(13)

Ek MLD≤Zeuð Þ ¼ 0:0864� 19� exp 0:038 � PAR=DL0:45ð Þ=KD PARð Þ� 1þ exp �0:15 � PAR=DLð Þ

1þ exp �3 � IMLð Þ

� �
(14)

IML ¼ PAR=DL� exp �0:5 � KD PARð Þ � MLDð Þ (15)

EK zð Þ ¼ Ek zð Þ�∫
700 nm

400 nmE t; z; λð Þdλ�∫
700 nm

400 nmaϕ λð Þdλ÷∫
700 nm

400 nmE t; z; λð Þ�aϕ λð Þ dλ (16)

A significant fraction of phytoplankton biomass can reside beneath the mixed layer depth (MLD), yet still
within the euphotic zone. In these low-light environments hidden from satellite imagery, photoacclimation
imparts a distinct and pervasive physiological signature. Phytoplankton beneath the surfacemixed layer have
an increased cellular capacity to absorb light (i.e., higher aϕ/Cphyto), which in turn decreases EK relative to
surface values [Cullen, 2015]. The EK model adopted here [Behrenfeld et al., 2016] is applicable to surface
mixed layer phytoplankton populations only. Therefore, a simple depth dependency to EK is introduced
here for z>MLD. This dependency predicts that EK decreases exponentially with depth (i.e., proportional
to E(t, z, λ)) to a minimum value of 0.0864mol photonsm�2 d�1 (10μmolm�2 s�1) when E(t, z, λ) reaches
0.1mol photonsm�2 d�1 (equation (17), EK remains at 10 umolm�2 s�1 at light levels below
0.1mol photonsm�2 d�1). These values were chosen as the approximate lower EK limit observed in field data
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sets [Huot et al., 2008] and the minimum daily irradiance that corresponds to deep chlorophyll maxima
[Mignot et al., 2014], respectively. Estimating phytoplankton biomass and light-harvesting capacity beneath
the surface mixed layer is a common challenge of all models. Global analyses of the vertical structure of
Chl a have shown that on average and consistent with photoacclimation, Chl a increases toward the base
of the euphotic zone [Morel and Berthon, 1989; Uitz et al., 2006]. The CAFE model therefore assumes
aϕ(z>MLD) covaries with changes in Ek(z>MLD) (equation (18)). For example, twofold and fourfold
decreases in EK beneath the MLD corresponds to 1.3-fold and 1.6-fold increases in aϕ, respectively. For depths
beneath the mixed layer but within the euphotic depth, KD(λ), E(t, z, λ), and QPAR were recalculated using
aϕ(z>MLD).

Ek z > MLDð Þ ¼ 0:0864þ Ek MLDð Þ � 0:0864
E MLDð Þ � 0:1

� E zð Þ � 0:1ð Þ (17)

aϕ z > MLDð Þ ¼ aϕ MLDð Þ� 1þ 0:15�Ek MLDð Þ=Ek z > MLDð Þ½ � (18)

2.2. Reassessment of Global NPP, Model Comparisons, and Sensitivity Analyses

NPP estimates from the CAFEmodel are compared to three other widely cited NPPmodels. Here we provide a
brief overview of each model, and the reader is referred to the original publications for complete model para-
meterizations. The first model is the wavelength and depth-integrated Chl a-based Vertically Generalized
Productivity Model [Behrenfeld and Falkowski, 1997], herein denoted VGPM. Shown in equation (19), the

VGPM derives NPP as the product of the maximum photosynthetic assimilation efficiency PBopt
� �

which is

estimated as a seventh-order polynomial of sea surface temperature (SST), the Chl a concentration at the

depth where PBopt occurs, an asymptotic factor of PAR, as well as Zeu and DL. The second model is the

chlorophyll-based model of Antoine and Morel [1996], herein denoted AM96. AM96 is conceptually similar
to an absorption-based model but was published before direct absorption estimates were available from
satellite measurements. Shown in equation (20), aϕ is derived as the product Chl and the maximum chloro-

phyll specific absorption coefficient a�max

� �
, where the product of a�max and ϕmax

μ is assumed to be globally

constant, and EK (denoted KPUR in the original publication) is modeled as a function of SST. The third model
is the carbon-based model of Westberry et al. [2008], herein denoted CbPM. Shown in equation (21), CbPM
derives NPP as the product of Cphyto and μ (i.e., equation (1)), where μ is empirically derived as a function
of a maximum carbon specific growth rate (μmax = 2 day�1), Chl : Cphyto as measured from satellite data,
and Chla.

VGPM : NPP ¼ 0:66125�PBopt SSTf g�Chlopt�PAR= PARþ 4:1ð Þ�Zeu�DL (19)

AM96 : NPP ¼ Chl �a�max�ϕμ
max� tanh EK SSTf g=Eð Þ (20)

CBPM : NPP ¼ Cphyto�μ μmax; Chl : Cphyto; IML
� 	

(21)

Models are compared at global scales and also five specific regions of interest shown in Figure 2. Following
Westberry et al. [2016], two of these regions represent the high latitude bloom forming Pacific Ocean (NPT:
140°W–150°W, 45°N–50°N) and Atlantic Ocean (NAT: 25°W–35°W, 45°N–50°N). The other three regions are
the North Atlantic subtropical gyre (NAG: 25°W–70°W, 25°N–35°N), the South Pacific subtropical gyre (SPG:
90°W–150°W, 15°S–40°S), and the Southern Ocean (SO:>60°S–90°S).

Finally, sensitivity analyses are performed at the global annual scale following Antoine and Morel [1996].
Specifically, different components of the CAFE model are adjusted (e.g., Ek is increased 10%), the model is
rerun, and annual NPP is computed. To illustrate the spatial impacts of sensitivity analysis model runs, global
annual NPP is further partitioned zonally.

2.3. Model Validation

The Primary Production Algorithm Round Robin (PPARR) evaluation is a series of open-community studies to
quantify and compare NPPmodel performance against direct field measurements [Friedrichs et al., 2009; Saba
et al., 2010; Saba et al., 2011; Y. J. Lee et al., 2015]. Overall, model performance in PPARR studies is quantified
using the root-mean-square difference (RMSD, equation (22)), where NPPmod and NPPobs are modeled and
measured NPP, respectively. The RMSD test statistic incorporates both model bias (equation (23)), which
quantifies the difference between the average NPPmod and NPPobs, and the unbiased RMSD (uRMSD,
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equation (24)), which quantifies the ability of modeled NPP to track measured variance. Here these three test
statistics are employed to evaluate the CAFE model performance against a large and globally comprehensive
PPARR data set [Saba et al., 2011] that is comprised of field NPP measurements from 10 marine regions
(Figure 2). The CAFE model is evaluated in each unique region and all regions combined, and results are
compared against the 21 other NPP models that are analyzed by Saba et al. [2011].

In all PPARR assessments including Saba et al. [2011], participating models do not derive NPP from satellite
data but rather from a suite of field-measured input data (Chl a, PAR, MLD, SST, date, location, and day length)
measured alongside NPP. The provision of input data eliminates any bias arising from ocean color retrievals
and permits models to be evaluated against NPP measurements where no satellite data are available (e.g.,
cloud masked data and dates outside the satellite record). As attendant aϕ(λ), adg(λ), bb(λ), and η measure-
ments are not included in the field-measured input data, the CAFE model was modified for this exercise.
First, aϕ(λ) was derived as a function of Chl a and two wavelength-specific coefficients derived from the
global analysis of Bricaud et al. [1998, equation (25)]. The influence of this assumption on CAFE model valida-
tion is addressed in section 4. Briefly, this assumption likely degrades model performance such that model
skill estimates are conservative. Second, adg(λ), bb(λ), and η measurements were derived from climatology
measurements for the given month and location (27 km2 search grid) of the input data. Across the entire
Saba et al. [2011] data set, climatological data could not be assessed for 9% of the data (predominantly
coastal measurements) and are omitted from this analysis.

RMSD ¼ 1
N

XN
i¼1

log10 NPPmod ið Þð Þ � log10 NPPobs ið Þð Þð Þ2
 !0:5

(22)

Bias ¼ log10 NPPmodð Þ � log10 NPPobsð Þ (23)

uRMSD ¼ RMSD2 � Bias2
� �0:5

(24)

aϕ λð Þ ¼ A:p λð Þ�chlE:p λð Þ (25)

To further evaluate the CAFE model, modeled NPP is compared to direct NPP measurements at the Hawaii
Ocean and Bermuda Atlantic Time Series stations (HOT and BATS) for the period 2003–2014. Unlike the
PPARR validation above, in this analysis the CAFE model uses 8 day satellite composites averaged across a
27 × 27 km grid around each station, as well as direct conductivity-temperature-depth (CTD) measurements

Figure 2. Geographical distribution of in situ NPP data sets used to test model skill are shown as points. Dashed grey boxes
delineate regions where seasonality of modeled data is examined (NPT: North Pacific temperate; SPG: South Pacific Gyre;
SO: Southern Ocean, NAT: North Atlantic temperate; NAG: North Atlantic Gyre).
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to compute MLD. Subsequent 8 day CAFE time series at each station are linearly interpolated to the monthly
HOT and BATS NPP time series. This approach is repeated for the VGPM, AM96, and CbPM models, and each
model is evaluated using the test statistics above (equations 22–24).

3. Data

The reassessment of global NPP, model comparisons and sensitivity analyses are all populated using monthly
climatology Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua L3 products (http://oceancolor.
gsfc.nasa.gov/) averaged over the period 2003–2014. As listed in Table 1, the CAFE model uses five GIOP-DC
IOPs (aϕ(443 nm), adg(443 nm), bbp(443 nm), Sdg, and η), Chl a, PAR, and SST. Missing IOP and Chl a data
for a given cell are linearly interpolated between months, while day length is also factored into the interpola-
tion of missing PAR data. Global monthly climatological MLD data were derived by averaging monthly MLD
data for the period 2003–2014 using gridded data from the NASA supported ocean productivity website
(http://www.science.oregonstate.edu/ocean.productivity/). By necessity MLD climatology data blends different
data sources (Simple Ocean Data Assimilation (SODA) model 2003–2004, Fleet Numerical Meteorology and
Oceanographic Center (FNMOC) model 2005–2007, and Hybrid Coordinate Ocean Model (HYCOM) 2008–2014),
and in each data source MLD is defined as the depth where the density of water is 0.125 kgm�3 greater than
the density at a reference depth of 10m [Levitus, 1982]. As the SODAMLD data have a spatial resolution of 1°, all
global input fields were averaged into 1° spatial bins for input into the CAFE model. Finally, 8 day satellite com-
posites at the HOT and BATS sites are also MODIS Aqua L3 products. CTD data used to compute MLD at HOT
and BATS are from http://hahana.soest.hawaii.edu/hot/hot-dogs/ and http://bats.bios.edu/, respectively.

4. Results and Discussion
4.1. Model Climatology

Global climatological patterns of NPP and phytoplankton division rates (d=μ/log(2)) from the CAFE model
are presented in Figure 3. NPP rates are areally integrated through the euphotic zone, while division rates cor-
respond to phytoplankton in the surface mixed layer only. Global oceanic NPP from the CAFE model
(52 PgCm�2 yr�1) is slightly higher than the frequently cited 50 PgCm�2 yr�1 [IPCC, 2013]. NPP is highest
in regions of equatorial divergence and coastal upwelling sites and lowest in the South Pacific subtropical
gyre, eastern Mediterranean Sea, and polar waters (Figure 3a). Globally averaged phytoplankton division

Figure 3. Global CAFEmodel climatology showing (a) mean annual NPP and (b) phytoplankton division rates in the surface
mixed layer for the five oceanic regions delineated in Figure 2. Phytoplankton division rates in the surface mixed layer
during the (c) boreal summer and (d) boreal winter.
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rates are 0.34 day�1, which correspond to a doubling time of approximately 3 days. For reference, the global
average is slightly higher than the annual means of the five regions shown in Figure 3b where, excluding the
Southern Ocean (0.11 day�1), annual average division rates varied between 0.25 and 0.28 d�1. The North
Atlantic has the most pronounced seasonality where division rates ranges from 0.06 day�1 in January to
0.46 day�1 in July. The seasonal range in the North Pacific is comparatively muted, ranging from 0.19 d�1

in December to 0.43 d�1 in June. The higher winter rates in the North Pacific are driven largely by shallower
mixed layer depths (MLD≈ 100m) that enable phytoplankton to absorb more light than the deeper mixing
North Atlantic (winter MLD> 200m) [Westberry et al., 2016]. That the annually averaged division rates in
the South Pacific and North Atlantic Gyres are similar to the higher latitude regions may seem surprising
given these gyres have persistently low Chl a concentrations. Low winter division rates in the higher latitude
regions are certainly a dominant mechanism driving this annual convergence. However, the subsequent dis-
cussion also demonstrates that the productivity of subtropical gyres is likely higher than previously predicted
by other widely cited models. In the following sections the individual components of the CAFE model are
described and validated. Next, a comparison of the CAFE and 21 other models to direct NPP measurements
shows the CAFE model yields the most accurate satellite-based NPP estimates. Having established the accu-
racy and mechanistic structure of the CAFE model, the final section returns to global NPP estimates and pro-
vides a more detailed comparison to other widely cited models.

4.2. Model Parameterization

This section is divided into three subsections that describe the structure of the CAFE model, and how and
why it differs from previously published absorption-based models. The first subsection describes the absorp-
tion of energy by phytoplankton, followed by a description of how photoacclimation dictates the partitioning
of absorbed energy between photochemical and nonphotochemical sinks, and finally an overview of
the conversion of photochemically absorbed energy into carbon biomass. Model sensitivity analyses are
discussed in each subsection and summarized in Table 2.
4.2.1. Absorbed Energy
Spectral inversion algorithms now permit the derivation of phytoplankton absorption coefficients (aϕ) and
other inherent optical properties (IOPs) from satellite ocean color data [Lee et al., 2002; Maritorena et al.,
2002; Werdell et al., 2013]. The CAFE model is one of a few absorption-based models that directly exploits
spectral inversion algorithms [Lee et al., 2011; Z. Lee et al., 2015; Kahru et al., 2015], as most other published

models derive EK as the product of Chl a and an assumed Chl a-normalized absorption coefficient a�ϕ
� �

. In

the models of Smyth et al. [2005] and Ondrusek et al. [2001], a�ϕ is constant. In the model of Marra et al.

[2003], a�ϕ varies with sea surface temperature with higher values predicted in warmer waters. In the model

of AM96, a�ϕ is not directly computed but rather the product a�ϕ�ϕmax
μ is assumed constant.

The CAFE model employs the GIOP-DC algorithm as it had the most accurate aϕ(λ) retrievals amongst
currently available inversion algorithms when evaluated against in situ measurements within the NASA

Table 2. Sensitivity Analysis of Parameters within the CAFE Model Frameworka

Model Run Description Global NPP (Pg C yr-1)

Latitudinal NPP (Pg C yr�1)

90°N–60°N 60°N–30°N 30°N–0° 0°–30°S 30°S–60°S 60°S–90°S

CAFE default configuration 52.15 1.38 5.98 15.21 16.75 11.26 1.58
Sensitivity Analyses Fraction of CAFE Default Configuration
PAR calculated from Bricaud et al. [1998] 54.60 0.88 1.08 1.09 1.05 1.00 0.94
aϕ(λ) + (ϕμ) uncertainty (GIOP-DC) 56.96 1.13 1.13 1.10 1.08 1.07 1.06
EK� aϕ uncertainty (GIOP-DC) 46.43 0.73 0.85 0.88 0.91 0.92 0.91
SST derived from SST 51.04 0.59 0.95 1.03 1.06 0.89 0.59
Current EK parameterization + 10% 55.80 1.07 1.07 1.07 1.07 1.07 1.07
Current EK parameterization� 10% 48.50 0.94 0.93 0.93 0.93 0.93 0.94
No increases in subsurface aϕ(λ) 47.98 0.97 0.93 0.90 0.90 0.96 0.98
Subsurface aϕ(λ) doubles 55.33 1.03 1.05 1.08 1.07 1.03 1.02

aThe top row summarizes global and latitudinal annual NPP for the default configuration of the CAFE model. Subsequent rows describe the sensitivity analysis
performed, resultant global NPP, and the fractional change in latitudinal regions relative to the default configuration of the CAFE model.
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bio-optical marine algorithm data set [Brewin et al., 2015]. A series of manuscripts by Bricaud et al. [1995, 1998,
2004] have analyzed aϕ variability in the global ocean and are used here to qualitatively evaluate the
GIOP-DC. Bricaud et al. [1995, 1998] document that Chl a explains greater than 60% of aϕ(λ) variance. Their
analysis shows that as Chl a increases (1) a�ϕ decreases and (2) the spectral shape of aϕ(λ) shifts toward

increased relative absorption in the longer (>550 nm) wavelengths. As noted in section 4.2, the magnitude
of aϕ(λ) is unconstrained in the GIOP-DC algorithm (i.e., it is not directly tied to Chl a), but its spectral shape
is defined by the Chl a-dependent coefficients presented in Bricaud et al. [1998]. Figure 4 compares global
annual patterns of aϕ(443 nm) derived from the GIOP-DC and aϕ(443 nm) calculated from Chl a (OCI algo-
rithm [Hu et al., 2012]) following Bricaud et al. [1998]. The two approaches show very similar global patterns
and linearly covary (r2= 0.67, p< 0.001, n=5,675,259). However, significant differences exist across much of
the ocean when viewed by the percent difference between the two approaches (Figure 4). In the subtropical
gyres, aϕ from the GIOP-DC is approximately 50% lower than aϕ computed from Chl a, while in temperate
and equatorial waters aϕ from the GIOP-DC is approximately 50% higher. The largest source of variance in
the Chl a versus a�ϕ λð Þ relationship is cell size [Bricaud et al., 2004], such that at a given Chl a concentration,

large phytoplankton cells absorb more energy than small phytoplankton cells (i.e.,a�ϕ is higher in microplank-

ton than picoplankton at equivalent Chl a concentrations). Consistent with the departure between Chl a and
GIOP-DC estimates of aϕ (Figure 4), microplankton are increasingly dominant in temperate and upwelling
waters, while picoplankton dominate biomass in subtropical gyres [Brewin et al., 2010; Marañón et al.,
2012]. Thus, discrepancies between the two approaches are consistent with global patterns in phytoplankton
size, which in turn lends increased confidence to employing the GIOP-DC estimates of ϕmax

μ to derive

absorbed energy.

Table 2 summarizes the CAFE model’s sensitivity to measurements of aϕ(λ). Three CAFE model runs were per-
formed where aϕ(λ) was calculated from Chl a (OCI algorithm) following Bricaud et al. [1998] and aϕ(λ) was
calculated� the uncertainty in GIOP-DC derived aϕ(λ) values. First, deriving aϕ(λ) from Chl a [Bricaud et al.,
1998] increased global NPP by 2.45 Pg C yr�1. Consistent with Figure 4, NPP declined in polar waters and
increased in subtropical and tropical waters where picophytoplankton are dominant. GIOP-DC-derived
uncertainty in aϕ(λ) values has a larger influence on NPP, where addition and subtraction of uncertainty to
aϕ(λ) increased and decreased global NPP by 4.8 and 5.7 Pg C yr�1, respectively. Global NPP is more sensitive
to an equivalent decrease in aϕ(λ) (relative to an equivalent increase) simply because aϕ(λ) is a small fraction
of total absorption (equation (7)). A detailed spatial analysis of aϕ(λ) uncertainty is beyond the scope of this
research, though Table 2 does show that global NPP is most sensitive to aϕ(λ) uncertainty in temperate and
polar waters in the Northern Hemisphere.

Planned hyperspectral satellite sensors (e.g., NASA’s PACE instrument) may afford more accurate measure-
ments of aϕ(λ) from space. In general, the accuracy of such retrievals increases with higher spectral resolution
by relaxing the number of assumptions required when transforming water leaving radiance to inherent opti-
cal properties [Werdell et al., 2013]. In particular, with hyperspectral data the GIOP-DC algorithmmay not need
to anchor the spectral shape of aϕ(λ) to Chl a. Unconstrained spectral assessments of aϕ(λ) could improve the
derivation of absorbed energy but perhaps more importantly could allow scientists to track broad changes in

Figure 4. Annual climatology of aϕ(443 nm) computed from the GIOP-DC and estimated empirically as function of Chl a
following Bricaud et al. [1998], and the percent difference between the two approaches.
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phytoplankton taxa (at the pigment level) through space and time. The Hyperspectral Imager for the Coastal
Ocean was recently used to discern a toxic phytoplankton bloom by identifying its unique fluorescence sig-
nature that could not otherwise be captured with extant multispectral satellite platforms [Dierssen
et al., 2015].
4.2.2. Photoacclimation (EK)
EK represents a key phytoplankton physiological property in productivity models, as it defines whether
absorbed energy is used to fuel growth or is dissipated as heat or fluorescence. Asϕmax

μ is largely constrained

across the global ocean (next section), EK drives much of the global variability inϕμ and is consequently para-
mount to generating accurate estimates of μ and NPP. The parameterization ofϕmax

μ varies widely across NPP

models. The absorption-based model of Marra et al. [2003] assumes that ϕmax
μ is globally constant at

116μmolm�2 s�1. In contrast, Ondrusek et al. [2001] varies EK as a function of PAR, such that PAR values of
10 and 1500μmolm�2 s�1 correspond to FV/FM values of 35 and 105μmolm�2 s�1, respectively. The models
AM96 and Smyth et al. [2005] employ identical models for FV/FM and describe it as a function SST following
Morel et al. [1996], where SSTs of 5°C and 25°C yield ϕmax

μ values of 31 and 110μmol photonsm�2 s�1,

respectively.

The CAFE model adopts the newϕmax
μ model of Behrenfeld et al. [2016], which is based on fundamental prin-

ciples of chlorophyll synthesis regulation. A comparison of the global annual climatology of ϕmax
μ employed

by the CAFE model and the SST-based ϕmax
μ values from Morel et al. [1996] is shown in Figure 5a. While both

models predict that ϕmax
μ declines poleward, the CAFE model predicts significantly higher values in the stra-

tified subtropical oceans and lower values in upwelling coastal zones. These differences in ϕmax
μ translate to

Figure 5. (a) The annual climatology of EK modeled as a function of the optical environment (top) and a function of sea
surface temperature (bottom). (b) The corresponding fraction of absorbed energy dissipated as NPQ predicted by each
model, averaged by latitude. (c) Monthly climatology of EK for the twomodels in five regions delineated in Figure 2. All data
in Figures 5a–5c corresponds to the surfacemixed layer only, and the optical model has been spectrally scaled to match the
SSTmodel. (d) EKmeasurements from the South Pacific [Huot et al., 2008] are shown against (e) the corresponding EK values
derived from the optical model.
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large differences in the calculated amount of absorbed energy passed to the photosynthetic reaction centers
(Figure 5b). Both models predict that a greater fraction of absorbed energy is dissipated as NPQ in polar ver-
sus subtropical waters, which is consistent with field data [Browning et al., 2014]. However, the CAFE model
predicts that approximately 35% of absorbed photons drive photochemistry in subtropical waters, compared
to ~25% predicted by the SST model. The annual averages shown in Figures 5a and 5b mask the large
seasonal differences between these two approaches. Across the five regions delineated in Figure 2, the
newmodel predicts much greater seasonality inϕmax

μ relative to the SST model (Figure 5c), particularly in sub-

tropical waters. For example, the annual ϕmax
μ range in the North Atlantic is slightly larger in the CAFE model

(38–77μmolm�2 s�1) relative to the SST model (49–71μmolm�2 s�1), reflecting similar annual ranges in
mixed layer water temperature and optical environment. In the South Pacific Gyre, however, the annual
ϕmax

μ range predicted by the CAFE model (65–196μmolm�2 s�1) is much greater than the range in the

SST model (76–86μmolm�2 s�1). In this region, the mixed layer optical environment is variable through
the year despite small changes in SST. Sensitivity analyses are shown in Table 2. When the CAFE model
was run with SST-based ϕmax

μ estimates, global NPP declined 1.11 PgC yr�1. The analysis in Figures 5a–5c

and discussed above pertains to ϕmax
μ in the surface mixed layer only. A second major difference in ϕmax

μ

models is that the CAFE model is the only model that allows ϕmax
μ to vary beneath the mixed layer, all other

models assume vertical homogeneity. The importance of this assumption can be inferred from Table 2, where
implementation of SST-based ϕmax

μ estimates actually increases NPP in stratified subtropical and tropical

waters despite lower surface values. Table 2 also documents changes in NPP assuming a 10% error in the
new ϕmax

μ model of Behrenfeld et al. [2016] adopted here. Increases and decreases in ϕmax
μ by 10% both

increase and decrease global NPP by 3.65 Pg C yr�1, and the fractional changes in latitude are spatially muted.

The photoacclimation model of Behrenfeld et al. [2016] was originally evaluated against field data from
HOT, BATS, and the Atlantic Meridional Transect (AMT) field programs. Here we further evaluate this new
ϕmax

μ model by comparison with the field data reported by Huot et al. [2008] from the BIOSOPE

(BIogeochemistry and Optics South Pacific Experiment) program. Depth-resolved measurements span differ-
ent trophic regimes from the eutrophic upwelling region of the Chilean coast to the mesotrophic area asso-
ciated with the plume of the Marquieses Islands in the high-nutrient low-chlorophyll (HNLC) subequatorial
waters and to the extremely oligotrophic South Pacific Gyre [Claustre et al., 2008]. Figures 5d and 5e shows
longitudinal and depth maps of measured andmodeledϕmax

μ , respectively. These comparisons indicate a sta-

tistically significant linear relationship between modeled and measured ϕmax
μ (r2= 0.64, n=143, p< 0.01),

with an intercept not significantly different than 0, and a slope of 0.98. One clear discrepancy between the
measured and modeled ϕmax

μ shown in Figures 5d and 5e is that the BIOSOPE data show vertical structure

within the mixed layer, whereas the CAFE model implicitly assumes homogeneity within the MLD (though
some vertical heterogeneity is introduced through changes in the spectral quality of light through depth).
In the CAFE model the MLD is delineated as the depth where the density of water exceeds 0.125 kgm�3

the density at a reference depth of 10m [Levitus, 1982], which is greater than the more widely used
0.03 kgm�3 threshold [e.g., de Boyer Montégut et al., 2004]. Substituting the 0.03 kgm�3 threshold into the
BIOSOPE data yields an approximate twofold shallower MLD and in turn increases the linear relationship
between the measured and modeled ϕmax

μ (r2=0.71, n=143, p< 0.01). The broad ϕmax
μ patterns shown in

the BIOSOPE data are also consistent with a depth-resolved data set from the northeast tropical Atlantic
Ocean [Babin et al., 1996]. This data set also shows that despite a modest range is SST (18°C to 24°C), ϕmax

μ

within the surface mixed layer decreased from 400μmolm�2 s�1 in oligotrophic waters to
~160μmolm�2 s�1 in eutrophic waters. Consistent with the BIOSOPE data and our parameterization, ϕmax

μ

also decreased beneath the MLD and reached a minima near the euphotic depth.

4.2.3. Quantum Efficiency of Growth ϕmax
μ

� �
In the present model, we assumed ϕmax

μ

� �
varies between 0.018 to 0.030mol C (mol photons)�1 in high- and

low-light environments, respectively. This parameterization is based on the observation in field data sets that
EK positively covaries with the relative magnitude of nonphotosynthetic pigments and negatively covaries
with ϕmax

μ [Uitz et al., 2008]. Our parameterization of ϕmax
μ is lower than most previously published models,

where the treatment of ϕmax
μ can vary widely. In this section we review how various models estimate ϕmax

μ
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and then highlight how our treatment
is consistent with field and culture
measurements, as well as an a priori
estimate based on the energetic stoi-
chiometry of phytoplankton.

Several NPP models assume ϕmax
μ is

globally constant, but the ascribed
value varies twofold between these
models (0.030mol C (mol photons)�1 in
Ondrusek et al. [2001] and 0.060mol C
(mol photons)�1 in Smyth et al. [2005]
and Marra et al. [2003]). Uitz et al.
[2008] parameterized ϕmax

μ through an

analysis of in situ data, yielding lowest
values in stratified, high-light surface
waters and highest values in low-light
environments (e.g., beneath the surface
mixed layer or in regions where mixing
extends beneath the euphotic depth),
which is consistent with our approach
here. It should be noted, however, that
the field data used in their model were
derived from short-term (1–4 h) 14C
incubations, which measure an inter-
mediate quantity between gross and
net production and thus likely overesti-

mate ϕmax
μ [Halsey et al., 2010, 2011]. Finally, AM96 predict ϕmax

μ to vary in space and time but assume the

product a�ϕ�ϕmax
μ is constant (i.e., αB= 16 gC (g chl)�1 (mol photonsm�2)�1). Annually averaged ϕmax

μ for

the CAFE and AM96models are shown in Figure 6. The CAFE model predicts thatϕmax
μ has a mean� standard

deviation of 0.025� 0.002mol C (mol photons)�1, compared to 0.023� 0.009mol C (mol photons)�1 for
AM96. While these overall averages are similar, AM96 predicts greater spatial variability with values greater
than 0.060mol C (mol photons)�1 in coastal and upwelling regions. To our knowledge, the only comprehen-
sive fieldϕmax

μ data sets using 24 h incubations are fromWozniak et al. [1992] andMarra et al. [2007]. In these

studies, ϕmax
μ exhibits a constrained range within their respective areas of study, with values of 0.018, 0.020,

0.020, 0.030, and 0.030mol C (mol photons)�1 for the temperate Atlantic Ocean, Ross Sea, Arabian Sea, Black
Sea, and Baltic Sea, respectively. The CAFE model predicts strikingly similarϕmax

μ values of 0.020, 0.027, 0.021,

0.024, and 0.027mol C (mol photons)�1 in these five respective regions.

The quantum efficiency of growth has also been extensively measured in steady state cultures (Table 3).
Unfortunately, the photoacclimation state of these cultures (i.e., aϕ(λ)) is not always stated and it is therefore
not possible to deriveϕmax

μ from all the tabulatedϕμmeasurements. Nevertheless, it appears that EK is largely

invariant across nutrient-limited growth rates [Behrenfeld et al., 2004; Halsey et al., 2010] and is generally a fac-
tor of 0.5 to 0.75 lower than the growth irradiance [Geider et al., 1998; Halsey et al., 2010]. Across all taxa and
division rates listed in Table 3, ϕμ has a mean� standard deviation of 0.016� 0.005mol C (mol photons)�1. If
we assume that EK= EG× 0.75 within the expression tanh(EK/EG), then these data give a mean� standard
deviation for ϕmax

μ of 0.025� 0.008mol C (mol photons)�1, which is consistent with the CAFE model.

The energetic stoichiometry of phytoplankton can also be used to generate a priori estimates of ϕmax
μ . The

theoretical upper limit ofϕmax
μ is commonly cited as 0.125mol C (mol photons)�1. This value represents opti-

mal coupling of linear photosynthetic electron transport with Calvin cycle activity, where 24mol of absorbed
photons yield the precise amount of energy and reductant to reduce 1mol of glyceraldehyde-3-phosphate
(G3P). However, this optimal efficiency does not account for the various potential fates of absorbed light
energy. When all photosynthetic reaction centers are oxidized (i.e., subsaturating irradiance), a significant

Figure 6. A comparison of mean annual φmax
μ estimates from (a) the CAFE

and (b) AM96 models.
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fraction of absorbed energy is dissipated as heat or re-emitted as fluorescence [Huot and Babin, 2010].
Critically, this loss of absorbed energy is independent of additional light-dependent losses (as dictated
by EK) and must therefore be accounted for by lowering ϕmax

μ . The degree in which ϕmax
μ is lowered

can be estimated from low-light measurements of the quantum efficiency of photosystem II (i.e., FV/FM).
In cultures and in situ, FV/FM generally falls between 0.50 to 0.60 in the absence of nonphotochemical
quenching [Behrenfeld et al., 2006; Suggett et al., 2009]. These values imply a 40–50% light-independent
loss of absorbed energy [Huot and Babin, 2010]. Thus, in the context of absorption-based models, a
ϕmax

μ of 0.075mol C (mol photons)�1 is a more realistic upper limit. This upper limit represents gross pri-

mary production (GPP), where all absorbed photons yield the precise energy and reductant to convert
CO2 to G3P. The energetic stoichiometry of phytoplankton growth and NPP must also account for all cata-
bolic processes that respire fixed carbon back to CO2 and all anabolic processes that divert photosynthetic
energy and reductant away from the Calvin cycle [Behrenfeld et al., 2004, 2008]. Over a diel cycle, these
processes further lower ϕmax

μ by a magnitude that can be estimated as the ratio of GPP to NPP. A compre-

hensive comparison of paired GPP (18O technique) and NPP measurements collected during the Joint Global
Ocean Flux Study program yields a robust GPP:NPP ratio of 2.7 [Hendricks et al., 2005; Marra, 2002]. Steady
state monoculture experiments spanning a large range of growth rates indicate a GPP:NPP ratio of 3.3
[Halsey and Jones, 2015]. Dividing 0.075mol C (mol photons)�1 by these field and culture-based GPP:NPP
ratios gives ϕmax

μ values of 0.030 and 0.022mol C (mol photons)�1, respectively, that again are bracketed

by CAFE model estimates.

Table 3. Culture Measurements of φμ Across Nutrient-Limiting Growth Rates

Limiting Resource

Species EG C:Chl μ φμ

Laws and Bannister [1980]
NO3 T. weissflogii 247 336 0.15 0.011
NO3 T. weissflogii 241 144 0.34 0.017
NO3 T. weissflogii 239 111 0.48 0.019
NO3 T. weissflogii 236 95 0.72 0.022
NO3 T. weissflogii 233 62 0.94 0.021
NH4 T. weissflogii 246 218 0.17 0.015
NH4 T. weissflogii 244 185 0.30 0.018
NH4 T. weissflogii 240 133 0.05 0.022
NH4 T. weissflogii 235 96 0.68 0.021
NH4 T. weissflogii 231 69 0.94 0.022
PO4 T. weissflogii 236 223 0.18 0.013
PO4 T. weissflogii 231 195 0.27 0.017
PO4 T. weissflogii 230 128 0.47 0.020
PO4 T. weissflogii 224 101 0.66 0.023
PO4 T. weissflogii 221 63 0.92 0.022

Jakob et al. [2007]
NO3 P. tricornutum 168 85 0.07 0.006
NO3 P. tricornutum 36 25 0.11 0.009

Halsey et al. [2010]
NO3 D. tertiolecta 235 0.45 0.014
NO3 D. tertiolecta 235 0.85 0.013
NO3 D. tertiolecta 235 1.53 0.016
NO3 T. weissflogii 235 303 0.2 0.014
NO3 T. weissflogii 235 93 0.5 0.014
NO3 T. weissflogii 235 42 1.0 0.014

Halsey et al. [2014]
NO3 O. tauri 205 63 0.2 0.014
NO3 O. tauri 205 64 0.5 0.014
NO3 O. tauri 205 53 1.0 0.018
NO3 M. pusilla 205 149 0.2 0.003
NO3 M. pusilla 205 102 0.5 0.005
NO3 M. pusilla 205 118 1.0 0.016
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4.2.4. Subsurface Productivity
Phytoplankton properties derived from
satellite ocean color data correspond
to natural communities within the
surface mixed layer. In most of the glo-
bal ocean, sufficient light passes
through the surface mixed layer to
enable phytoplankton growth at depths
hidden from satellite detection [Silsbe
and Malkin, 2016]. In these darker
waters, light limitation elicits genotypic
(photo-adaptation) and phenotypic
(photoacclimation) responses in phyto-
plankton communities that are often
observed as subsurface chlorophyll
maximum layers (SCMLs). Specific
mechanisms regulating community
composition, distribution, and produc-

tivity in SCMLs are variable through space and time (reviewed in Cullen [2015]). In the most oligotrophic
and clearest waters, elevated chlorophyll at the SCML almost entirely reflects a photoacclimation response,
with no matching increases in phytoplankton biomass at depth [Mignot et al., 2014; Cullen, 2015]. In stratified
waters that support a higher flux of nutrients, SCMLs are promoted at shallower optical depths (i.e., depths
with higher light climate) [Uitz et al., 2006], and the increase in Chl a observed at the SCML is progressively
more associated with an increase in phytoplankton biomass [Cullen, 2015].

The treatment of subsurface biomass and productivity varies across satellite-based models. Some models
assume all input parameters (e.g., aϕ, EK, and ϕmax

μ ) are invariant with depth [Smyth et al., 2005; Marra

et al., 2003], while other models recognize that the distinct phytoplankton physiology in subsurface commu-
nities demands a depth explicit approach [e.g., Westberry et al., 2008]. Syntheses of large data sets have
yielded empirical equations that predict depth-dependent increases in Chl a relative to surface concentra-
tions [e.g., Morel and Berthon, 1989; Uitz et al., 2006]. Two absorption-based models (AM96 [Ondrusek et al.,
2001]) have applied these empirical equations to model the vertical distribution of aϕ through the euphotic
zone. The CAFE model predicts that EK decreases beneath the mixed layer and that as EK declines, aϕ
increases (equation (18)). Consistent with predicted depth-dependent increases in Chl a [Uitz et al., 2006],
the CAFE model predicts that depth-dependent aϕ increases are maximal in stratified oligotrophic waters
and minimal in eutrophic waters (data not shown).

Two sensitivity analyses document the influence of the vertical distribution of aϕ on global NPP (Table 2). If
the CAFE model is run such that aϕ was constant through the euphotic depth, global NPP declines by
4.17 Pg C yr�1 with the most pronounced changes in the permanently stratified tropical waters. If the CAFE
model is run such that depth-dependent increases in aϕ were doubled, global NPP increases by
3.18 Pg C yr�1 with the greatest increases again in the permanently stratified tropical waters. The default
configuration of the CAFE model alongside these two alternate aϕ(z) parameterizations was also applied
to MODIS Aqua data at the Hawaiian Ocean Time Series. Figure 7 illustrates resultant volumetric rates of
NPP from the three model runs alongside in situ NPP measurements at 75m (i.e., beneath the mixed layer
for 93% of data). The default configuration of aϕ(z) in the CAFEmodel (equation (18)) yielded a very small bias
(�0.006) when compared to in situ measurements. Conversely, assuming aϕ is constant with depth underes-
timated NPP (bias =�0.213), while doubling depth-dependent increases in aϕ overestimated NPP
(bias = 0.114). This exercise was repeated at 100m and again the CAFE model bias (0.073) was lower than
the other two scenarios (�0.178 and 0.192).

4.3. Model Validation

The CAFE model performed very well when evaluated alongside NPP field measurements. Figure 8a com-
pares the CAFE model performance against the 21 other NPP models included in the Saba et al. [2011] data
set where direct NPP measurements from all 10 regions are pooled together (Figure 2). Overall, the CAFE

Figure 7. Measured and modeled NPP beneath the mixed layer (75m) at
the Hawaii Ocean Time Series. The grey shaded area represents an
assumed 20% measurement error in direct NPP measurements. The solid
green line is the default configuration of the CAFE model. The dotted line
is the CAFE model where depth-dependent increases in a are doubled,
and the dash-dotted lined is the CAFE model where (CPhyto) is equivalent
to surface values.
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Figure 8. (a) NPP model skill partitioned into variance (uRMSD) and bias for all in situ data sets. Models 1–21 are previously
published NPP models listed in Saba et al. [2011], green and blue models are Chl a and absorption-based models,
respectively, and the CAFE model is shown in red. Note that the very low CAFE model bias is too small to see. (b) Region
specific model skill (RMSD) separated into the 10 in situ data sets shown in Figure 2.
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model explained both the greatest amount of variance (uRMSD=0.255) and had the lowest absolute model
bias (0.003, Figure 8a; note that the model bias is too low to be visible). Taken together, the CAFE model had
the highest model skill (RMSD= 0.255) across the pooled data set, slightly better than the absorption-based
model of Antoine and Morel [1996] (RMSD=0.257).

CAFE model skill, like all models, varied between ocean regions (Figure 8b). The CAFE model performed bet-
ter than average in 8 of the 10 regions and was the only model with lowest RMSD in more than one region
(Hawaii Ocean Time Series (HOT), Black Sea). However, the model performed poorly in the Arabian Sea and
North Atlantic Bloom Experiment (NABE) data sets. In these regions the CAFE model was effective at reprodu-
cing the variance of NPP measurements, as the uRMSD was 0.15 and 0.08 in Arabian Sea and NABE data sets,
respectively. Poor model skill was instead driven by model bias, as the CAFE model underestimated NPP by
factor of 1.97 and 1.48 in these two data sets, respectively. Mean calculated photosynthetic assimilation effi-

ciencies (PBOpt [Behrenfeld and Falkowski, 1997]) were 8.4 and 3.4mgC (mgChl)�1 h�1 in the Arabian Sea and

NABE data sets, respectively. These assimilation efficiencies are within the range of measured values
[Behrenfeld and Falkowski, 1997] and were also bracketed by higher and lower mean assimilation efficiencies

at other regions where the CAFE model performed well (PBOpt = 1.5 and 11.2mgC (mgChl)�1 h�1 at WAP and

BATS, respectively). This suggests that the CAFE model is likely underestimating the total amount of energy
absorbed (QPAR), rather than the conversion of absorbed energy into carbon biomass (ϕμ). Recall that with
the PPARR approach, NPP models use tabulated in situ data rather than direct satellite measurements. As a
result, the CAFE model estimated aϕ(λ) using Chl a-dependent coefficients [Bricaud et al., 1998] due to the
absence of aϕ(λ) (and other IOP) measurements in the tabulated PPARR data set. Direct aϕ(λ) measurements
from the Arabian Sea Joint Global Ocean Flux Study taken on a subset of stations clearly demonstrate that
this approach underestimated aϕ(λ). Across eight stations where NPP was also measured, direct aϕ(λ) mea-
surements from surface waters (filter pad technique) were on average 1.81 times greater than aϕ(λ) estimated
from attendant Chl ameasurements (high-performance liquid chromatography). Direct aϕ(λ) measurements
are not available for the NABE data set; however NPP measurements coincided with the spring bloom that
was dominated by diatoms and other large phytoplankton [Lochte et al., 1993]. Given that aϕ(λ) for larger
microplankton typically exceed Chl a-based aϕ(λ) estimates [Bricaud et al., 2004], it is highly probable that
QPAR is also underestimated in this particular data set. Indeed across the entire PPARR data set, estimating
aϕ(λ) from Chl a likely diminished CAFE model skill. The ratio of aϕ(λ) from the GIOP-DC to that estimated
using Chl a [Bricaud et al., 1998] was retrieved frommonthly climatology data sets for each NPPmeasurement
and compared to CAFE model bias. A statistically significant linear relationship (p< 0.05, n= 1046) confirms
that locations where the CAFE model underestimated NPP coincides with regions where Chl a-based aϕ(λ)
estimates are lower than aϕ(λ) from the GIOP-DC.

To further evaluate the CAFE model performance, we compared NPP estimates derived from satellite mea-
surements to direct NPP measurements at the HOT and BATS sites. Results of this analysis are shown in
Figure 9, alongside NPP calculated from the VGPM, AM96, and CbPM models. In Figure 10, the grey shaded
area corresponds to an assumed 20% uncertainty around the direct NPP measurements [Saba et al., 2011].
Relative to using direct measurements as input (Figure 9b), running the CAFE model with satellite measure-
ments improved model performance at HOT but lowered model performance at BATS. The RMSD at HOT
and BATS for the satellite-based CAFE NPP data was 0.09 and 0.25, respectively (in contrast to RMSDs of
0.13 and 0.22 from tabulated in situ data). The RMSDs at HOT and BATS were 0.32 and 0.40 for the
VGPM, 0.13 and 0.22 for AM96, and 0.15 and 0.40 for the CbPM, respectively. Thus, when combining both
time series, the CAFE model had the highest model skill when run with satellite data. All four models were
unable to reproduce the recurrent annual NPP maxima at BATS between January and March (Figure 9b).
Unlike the Arabian Sea and NABE data sets discussed previously, this discrepancy appears to be largely
driven by physiology rather than an underestimation of absorbed energy. A comparison of absorbed
energy (equation (7)) calculated using satellite data against direct surface measurements of PAR, aϕ(λ),
and adg(λ) collected between 2002 and 2011 (Bermuda Bio-Optics Project) showed strong linear covariance
(r2= 0.77, p< 0.01, n= 49) where remotely sensed absorbed energy underestimated measured absorbed
energy by a factor of only 0.94. Whether the discrepancy between the CAFE model and peak NPP at

BATS is driven by photoacclimation (EK) or the maximum quantum efficiency of growth, ϕmax
μ

� �
is unclear

and warrants further investigation.
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4.4. Model Comparisons

Figure 10 compares NPP estimates from the CAFE model to the VGPM, CbPM, and AM96 models. Figure 10a
shows the difference between annual NPP climatologies, and Figure 10b illustrates NPP monthly climatology
for each model in the five oceanic regions delineated in Figure 2. Global annual NPP derived from AM96

Figure 10. (a) Global patterns showing the difference between the CAFE model annual NPP climatology and three other
models. (b) NPP monthly climatology for the five oceanic regions delineated in Figure 2 for the CAFE and three other
models.

Figure 9. Direct NPP measurements from the (a) Hawaii Ocean and (b) Bermuda Atlantic Time Series are compared against
satellite-derived estimates from CAFE, VGPM, AM96, and VGPMmodels. The grey shaded area represents an assumed 20%
measurement error in direct NPP measurements.
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(60 Pg C yr�1) exceeded the CAFE model (52 PgC yr�1), whereas global annual NPP derived from the CbPM
(52 PgC yr�1) and VGPM (51 PgC yr�1) models was very proximal. Despite these similar global magnitudes,
spatial disparities between NPP models are striking. The CAFE model predicts elevated NPP in tropical and
subtropical waters and diminished NPP in temperate and polar waters relative to all other the models.

The exact mechanisms behind these large spatial disparities are model dependent, and given the different
structure of each model (e.g., Chl a and carbon based), a comprehensive comparison is beyond the scope
of this current research. Across all models, differences in the conversion of absorbed energy to carbon
biomass is clearly a dominant factor behind the large spatial and temporal patterns shown in Figure 10.
For example, in the VGPM, NPP is modeled as an asymptotic function of PAR (equation (19)).
Consequently, the efficiency in which light is converted to carbon biomass is more than twofold greater
when PAR is 20mol photonsm�2 d�1 relative to 45mol photonsm�2 d�1 (i.e., the proximate annual mean
in temperate and tropical waters, respectively). In contrast, the CAFE model employs a new photoacclimation
model based on fundamental principles of chlorophyll synthesis regulation [Behrenfeld et al., 2016]. This well-
validated component of the CAFE model (e.g., Figure 5) predicts latitudinal gradients of photochemical effi-
ciency are relatively muted, which is consistent with field data [Lin et al., 2016]. Spatial differences between
the CAFE, AM96, and CbPMmodel are less pronounced. The AM96model predicts that on average 50%more
absorbed energy in the surface mixed layer is dissipated as nonphotochemical quenching than the CAFE
model, and this difference approaches 100% in the subtropical gyres (Figure 5). While this disparity enhances
CAFEmodel NPP in tropical and subtropical waters, it is partially mitigated as, unlike the CAFEmodel and field
data [Babin et al., 1996], AM96 assumes that EK is constant through depth. In temperate and coastal regions
NPP from AM96 exceeds CAFE model and this difference is largely driven by very highϕmax

μ (~0.06mol C (mol

absorbed photons)�1) in the AM96model. Annual global NPP climatology differences between the CAFE and
CbPM models are broadly similar to the other models. Annual averages mask important differences in
seasonality (Figure 10b). One dramatic difference in seasonality occurs in the South Pacific Gyre where
the CAFE and AM96 models predict maximal NPP in the boreal winter, whereas the CbPM that predicts
NPP is at its annual minima during this time. In this region NPP seasonality in the CAFE model is driven
by QPAR which is maximal in December and January (3.54mol photons d�1) and minimal in June
(1.90mol photons d�1). In contrast, seasonality in the CbPM is largely driven by satellite-detected Chl :
CPhyto that is maximal in July and minimal in December (0.004 and 0.002mgChl (mgC)�1). In the CAFE model
the efficiency in which absorbed photons are converted into phytoplankton biomass (ϕμ) tracks Chl : CPhyto,
the seasonal amplitude is comparatively muted (0.011 and 0.008mol C (mol photons)�1 in December and
June, respectively) relative to the larger changes in QPAR.

5. Conclusions

We have presented a mechanistic NPP model that captures the greatest variance and has the lowest bias
when compared to direct field measurements. This new model parses NPP into three functional traits: the
amount of energy absorbed, the fraction of absorbed energy passed to the photosynthetic reaction centers,
and the efficiency with which absorbed energy is converted to carbon biomass. Variations in absorbed
energy drive large changes in NPP and growth through space and time and can be readily measured from
satellite- and field-based methods. This research has also shown that the conversion of absorbed energy into
carbon biomass appears to be largely constrained across the global ocean. Global oceanic NPP from the CAFE
model (52 PgCm�2 yr�1) derived from climatological satellite data is similar to other model estimates,
though the CAFE model predicts large differences in the spatial and temporal nature of NPP relative to other
widely cited models. This result has important implications for estimated carbon fluxes to the deep ocean
export as well as trophic transfer to higher organisms.

Future advances in satellite instrumentation and attendant algorithms can further enhance the accuracy of
NPP measurements from space [Z. Lee et al., 2015]. For example, hyperspectral ocean color measurements
will likely improve aϕ(λ) assessments and have the potential to further improve phytoplankton community
composition discrimination from space. Improved IOP measurements can be readily implemented into the
current CAFE model, while taxonomic information may help constrain the physiological component (ϕμ) of

the model. The accuracy of chlorophyll fluorescence efficiency ϕapp
f

� �
measurements from space also

requires precise knowledge of aϕ(λ) [Huot et al., 2013]. Though not currently implemented in the CAFEmodel,
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ϕapp
f measurements may provide a mechanism to elucidate nutrient limitation from space [Behrenfeld et al.,

2009], and a robust evaluation of such measurements in the context of NPP is warranted. Finally, satellite-
based light and detection ranging (lidar) data could provide data on the vertical structure of phytoplankton
biomass [Westberry and Behrenfeld, 2013]. These data could supplement the growing capabilities of
BIO-ARGO data to enhance our understanding of phytoplankton dynamics beneath the surface mixed layer.
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