Home NPP Products LIDAR Frequently Asked Questions
Site Map Land / Ocean Merge Field / Lab Data Highlights / Results


Please note:

The Ocean Productivity Site has stopped updating its data.
We hope to continue operations shortly.

(09.12.2024)


NPP Products

ONLINE.DATA

VISUAL.COMPARISON

MODEL.DESCRIPTIONS

CODE


VGPM

Eppley-VGPM

CbPM

CAFE

Eppley-VGPM Net Primary Production (NPP) calculations

The following text provides a brief description of the Eppley-VGPM calculations. Select one of the other tabs above to find similar information regarding the other NPP Products algorithms.

The Eppley-VGPM The Eppley-VGPM is a sort of hybrid model that employs the basic model structure and parameterization of the standard VGPM ( Behrenfeld and Falkowski (1997a) ) but replaces the polynomial description of Pb_opt with the exponential relationship described by Morel (1991) and based on the curvature of the temperature-dependent growth function described by Eppley (1972) (see discussion on Home Page). The exponential Pb_opt function is commonly used in NPP models. Its application in the VGPM structure yield NPP distributions that are highly consistent with other algorithms employing the same exponential "Eppley" curve. The Eppley-VGPM is a "chlorophyll-based" algorithm (see discussion on Home Page) and is similar in form to the early models of Ryther and Yentch (1957) and Talling (1957).

The foundation of the Eppley-VGPM and other chlorophyll-based models is that NPP varies in a predictable manner with chlorophyll concentration (chl):

NPP = f(chl)

Because NPP is a rate and chlorophyll is a standing stock, derivation of the former from the later requires a "rate" term, specifically a chlorophyll-specific assimilation efficiency for carbon fixation. The description of this rate term is the single most important uncertainty in all chlorophyll based models. The Eppley-VGPM employs a variable termed Pb_opt, which is the maximum daily net primary production found within a given water column and expressed in units of mg carbon fixed per mg chlorophyll per hour. NPP at the depth of Pb_opt is thus:

NPP = chl * pb_opt * day length

where day length is the number of hours of day light at the location of interest and NPP is milligrams of carbon fixed per day per unit volume.

For studies of global ocean productivity and understanding its relationship to the ocean carbon cycle and ecosystem functioning, the quantity we are interested in is water column integrated productivity per unit of ocean area. The Eppley-VGPM thus needs a function to project surface NPP values through the water column to get production per unit surface area:

NPP = chl * pb_opt * day length * volume function

Volume function

The volume function is often an aspect of confusion for people working with the Eppley-VGPM or other chlorophyll-based NPP models. Here's how I like to think about it ...

Water column NPP is generally regarded as the primary production taking place from the surface to the depth at which 1% of surface light is available. We call this light depth the "euphotic depth" or "z_eu". If you were to consider the hypothetical condition where photosynthetic rates were uniform from the surface to z_eu, then water column production could simply be calculated as:

NPP = chl * pb_opt * day length * z_eu

or, in words, surface production times the euphotic depth.

In the real world, however, photosynthesis through the water column is far from constant. The most important factor driving this vertical variability is light. As sunlight penetrates the water column, some of it is absorbed and scattered backward. Consequently, sunlight decreases rapidly with depth in a near exponential manner. If it is really bright at the surface, photosynthesis will be light saturated and relatively constant in the upper layer, but eventually it will begin to decrease with depth toward z_eu. If surface light levels are low (e.g., cloudy day or high latitude winter), photosynthetic rates will be maximal right at the surface and decrease rapidly throughout the euphotic zone. These effects of light on water column production are accounted for in the VGPM by including a light-dependent term, f(par), in the volume function:

volume function = f(par) * z_eu

The f(par) term can be thought of as the ratio of realized water column integrated NPP to the maximum potential NPP if photosynthetic rates were maintained at maximum levels (i.e., Pb_opt) throughout the water column. The paramterization of this light-dependent term in the VGPM was determined empirically using thousands of field productivity measurements and is given by:

f(par) = 0.66125 * par / ( par + 4.1 )

Similar relationships have been derived empirically and theoretically on multiple occasions, with the most significant difference between expressions reflecting the severity of near-surface photoinhibition (i.e., decreases in photosynthesis due to damage by excessive light levels) inherent in the field data employed or assumed in the photosynthesis-irradiance model chosen.

Replacing the "volume function" with the above two equations, yields the basic Eppley-VGPM relationship:

NPP = chl * pb_opt * day length * [0.66125 * par / ( par + 4.1 )] * z_eu

For more details on the volume function, the f(par) relationship, and differences between NPP algorithms, see Platt & Sathyendranath (1993) and Behrenfeld & Falkowski (1997b).

Pb_opt

Chlorophyll-based NPP models take many forms. Some models are simple expressions relating surface properties to water column integrated products. Other models are highly sophisticated, describing the spectral attenuation of light through the water column, depth-dependent changes in phytoplankton pigment concentration, and time-resolved light absorption by phytoplankton. But, in the end, the two primary factors that control differences and similarities between chlorophyll-based NPP models are the choice of input chlorophyll data and the description of how light-saturated photosynthetic efficiencies vary in the environment (see Campbell et al. 2002, Carr et al. 2006). All NPP models require this description of physiological variability [whether it is based on daily integrated production measurements (Pb_opt) or "instantaneous" photosynthesis-irradiance measurements (Pb_max)] and it is universally the "Achilles tendon" of each algorithm.

For the Eppley-VGPM, physiological variability is linked to the Pb_opt variable and it is described as a function of sea surface temperature. The Eppley-VGPM Pb_opt function is an exponent that has a slope taken from a maximum growth rate model by Eppley (1972) and parameterized to yield a Pb_opt value of 4.6 at 20 degrees C.

pb_opt = 1.54 * 10**[(0.0275*sst) - 0.07]

From a physiological standpoint, the dependence of Pb_opt on temperature is not envisioned as reflecting a direct effect of temperature on carbon fixation efficiencies. Instead, the monotonically increasing values of Pb_opt with temperature in the Eppley-VGPM are viewed as reflecting a correlation between sea surface temperature (SST) and photoacclimation. Specifically, warmer waters generally have shallower physiological surface mixing depths and higher incident PAR. These conditions favor high-light acclimated phytoplankton, which requires less chlorophyll to support photosynthetic requirements for growth. This lower chlorophyll concentration give rise to high chlorophyll-specific photosynthetic rates. In other words, increasing Pb_opt with increasing SST.

Of course there is also the countering effect that warm ocean areas are also generally accompanied by vanishingly low surface nutrient concentrations. Nutrient stress causes Pb_opt to decrease. The Eppley-VGPM does not account for nutrient stress effects by allowing Pb_opt to decrease in warm waters, but does take into account simultaneous influences of high-light photoacclimation as SST increases.

Thus, the standard VGPM Pb-opt relationship emphasizes the nutrient-stress effect at high sea surface temperatures (SSTs), while the Eppley-VGPM Pb_opt relationship emphasizes the photoacclimation effect at high SSTs. (see Website Home Page for more discussion)

z_eu

Euphotic depth (z_eu) in the Eppley-VGPM is calculated using the Morel and Berthon (1989) Case I model. This model estimates z_eu from surface chlorophyll concentrations and is based on empirical equations to fit field data. In practice, total water column chlorophyll concentration is calculated from satellite surface chlorophyll using a formula that distinguishes between lower and higher chlorophyll waters. Then, given the amount of total chlorophyll, the euphotic depth is estimated, again using separate equations for lower and higher total chlorophyll conditions. See Morel and Berthon (1989) for more details.

In essence, light penetration is inversely related to chlorophyll: the more phytoplankton, the shallower the euphotic depth, and vice versa.

Variables needed

The Eppley-VGPM equation is:

NPP = chl * pb_opt * day length * f(par) * z_eu

NPP calculations with the Eppley-VGPM require the following input data fields:

  • chl
  • par
  • sst
  • day length

These ancillary data can be accessed here.

For details on Eppley-VGPM implementation, please see the code.



Last modified: 24 July 2024
by:  Toby Westberry

_Home_____NPP Products_____LIDAR__FAQ sheet

Site Map Land / Ocean Merge Field / Lab Highlights / Results